Elucidating the Physicochemistry of NP Attachment to Surfaces: Implications for Environmental Transport

Greg Lowry
Carnegie Mellon University
Civil & Environmental Engineering

Center for the Environmental Implications of NanoTechnology
www.ceint.duke.edu
What is Transport?

Porous Media
- Sand Filters
- Groundwater
- Soil & Sediment

Cross Media
- Deposition
- Aggregation state

All transport is affected by Aggregation state & Deposition

Membranes
Carboxylic Acids Dissaggregate nC$_{60}$ and Stabilize Smaller nC$_{60}$ Clusters

Implication:
Organic acids can lead to small nC$_{60}$ clusters whose mobility, toxicity, and physicochemical properties could differ from aq/nC$_{60}$

X. Chang and P.J. Vikesland, Virginia Tech
Factors Affecting Aggregation & Deposition

- **Physical Factors**
 - Size of NP and media (collector)
 - Energy input (e.g. mixing or porewater velocity)
 - Heterogeneity (physical and chemical)

- **Chemical Factors**
 - pH
 - Ionic strength and composition
 - NOM and organic acids
 - type, concentration, conditions of exposure
 - Engineered surface coatings
 - Surfactants, polymers, and polyelectrolytes
 - Biological modifications by EPS

Colloid Science

Less Understood
“Compartments” Approach to Determining Distribution of Environmental Contaminants
Properties needed to Assess the Distribution of Organic Pollutants

<table>
<thead>
<tr>
<th>Chemical Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vapor Pressure (P_{sat})</td>
</tr>
<tr>
<td>Aqueous solubility (χ)</td>
</tr>
<tr>
<td>Octanol-Water Partitioning (K_{ow})</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Environment Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_{oc}, compartment volumes</td>
</tr>
</tbody>
</table>
Properties needed to Assess the Distribution of Environmental Pollutants

<table>
<thead>
<tr>
<th>Chemical Properties</th>
<th>Nanoparticles (e.g. nC$_{60}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vapor Pressure (P_{sat})</td>
<td>~0</td>
</tr>
<tr>
<td>Aqueous solubility (χ)</td>
<td>?</td>
</tr>
<tr>
<td>Octanol-Water Partitioning (K_{ow})</td>
<td>Very high (low for metal oxides)</td>
</tr>
</tbody>
</table>

Environment Properties

| f_{oc}, compartment volumes | ? |
Properties needed to Assess the Distribution of Environmental Pollutants

<table>
<thead>
<tr>
<th>Chemical Properties</th>
<th>Nanomaterials (e.g. C\textsubscript{60})</th>
<th>Nanomaterials (proposed)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vapor Pressure ((P_{\text{sat}}))</td>
<td>(~0)</td>
<td>N/A</td>
</tr>
<tr>
<td>Aqueous solubility ((\chi))</td>
<td>(~0)</td>
<td>Agglomeration state, Dispersion stability</td>
</tr>
<tr>
<td>Octanol-Water Partitioning ((K_{\text{ow}}))</td>
<td>Very high (low for metal oxides)</td>
<td>Interfacial behavior (deposition)</td>
</tr>
<tr>
<td>Environment Properties</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(f_{\text{oc}}), compartment volumes</td>
<td>?</td>
<td>Ionic strength, ionic composition, pH, mixing, (f_{\text{oc}}), mineral surface</td>
</tr>
</tbody>
</table>
To predict transport we need to know:

- Attachment efficiency (α) and how this varies with:
 - pH, Ionic strength, ionic composition, size
 - Adsorbed NOM and other organic macromolecules
 - NP surface chemical composition, i.e., mineral phases and organic matter
 - Biological surface (collector) composition
Current State-of-the-Art

• Aggregation
  Widely studied (1000’s+ papers)
  Colloid and flocculation science

\[\alpha = \frac{1}{W} = \frac{k_a}{k_{a,\text{fast}}} \]

 Chemistry of the problem \(\alpha \) is handled empirically or stochastically
 Predicting the effects of NOM and adsorbed macromolecules on \(\alpha \) and \(D_f \) is not possible
Aggregation state-of-the-art

• Measure
 ○ Particle size and aggregation kinetics by light scattering
 ○ Electrophoretic mobility
 ○ All as a function of [salt]

• Model attachment efficiency with DLVO
 ○ Hydrodynamic model *assumed*

Chen and Elimelech,
Langmuir 22 10994, 1996
Models for particle aggregation

Collision rate constants

Rectilinear Model

Intermediate model

Curvilinear Model

Smoluchowski, 1917

Veerapaneni and Wiesner, 1997

Han and Lawler, 1992

Coalescing spheres

Porous aggregates
Deposition State-of-the-art

Glass beads
Sand
Model Soil
Soil

\[\alpha = \frac{\eta}{\eta_o} - \ln\left(\frac{C_e}{C_o} \right) \left(\frac{4a_c}{3(1 - n)\eta_o} \right) \]

Saleh et al., 2008 Environ. Sci. Technol. 42 3349.
Deposition State-of-the-art

- **QCM-D**
 - Quartz Crystal Micro-balance with Dissipation
 - Change in frequency of crystal oscillation indicates adsorbed mass
 - Energy dissipation indicates structural properties of adsorbed layer
 - Determined from time for energy dissipation after power is shut off
 - Many metal-oxide coated quartz crystals now available
 - Highly idealized systems

Most Nanomaterials are Coated

Coatings provide...
- Dispersion stability
- Functionality
- Targeting capabilities
- Biocompatibility
Coatings Dominate the Interaction
Energies between Particles

Attraction due to $V_{vdw} + V_M$

Repulsion due to $V_{ES} + V_{osm} + V_{elas}$

V_{osm} is strong repulsive force and results in agglomeration

Need to consider:
V_{elas}, V_{osm}
due to polyelectrolyte

Deposition Predictions need to include chemistry of surface coatings

\[\alpha_{pre} = 2.53 \times 10^{-3} N_{Lo}^{0.70} N_{E1}^{-0.31} N_{E2}^{3.51} N_{DL}^{1.35} \]

(J. Colloid Interface Sci. 1999, 218, 488-499)

\[N_{LEK1} = \frac{d_p d_m^2 \mu \Gamma N \alpha \rho_p}{\mu M_w} \]

Dimensionless number accounting for NP coating properties

\[\alpha_{pre} = 10^{-1.35} N_{LO}^{0.39} N_{E1}^{-1.17} N_{LEK1}^{-0.10} \]
What is needed for success?

• Understand fate, then transport
 ⊟ Partitioning behavior first
 Show that α is predictive of partitioning
 ⊟ Rates of transfer between phases second

• Get some chemistry into α for NPs coated with organic macromolecules
 ⊟ Understand interface (2 to 3 nm)
 ⊟ Effect of pH, ionic strength, ionic composition, surface properties (e.g. charge), NP size
 ⊟ Need models that include polydispersity and disaggregation
What is needed for success?

• Understand attachment to biological surfaces
 - Bacteria, plant roots, etc.
 - May strongly affect bioavailability
• Understand transformations that affect NP aggregation and deposition
 - Redox reactions, biological reactions, condensation of organic matter
 - Numerical models for NP-macromolecule interactions
 Kinetic rather than thermodynamic
Questions?
Objective: Determine the effect secondary organic acid coatings on nanoparticles emitted into the lower atmosphere

• Results:
 - Measured PSL particle growth in presence of a-pinene and ozone
 - Model predicts 5 to 10-nm growth of SOA per hour

• Implication:
 - NP properties in soil and water determined by coating properties

Neil Donahue and Erica Trump-CMU
NP Attachment and Deposition

\[\alpha = -\ln \left(\frac{C_e}{C_o} \right) \left(\frac{4a_c}{3(1-n)\eta_o} \right) = \frac{\eta}{\eta_o} \]

- Objectives:
 - Develop models for NP attachment linear combination of surfaces
 - Include chemistry of adsorbed macromolecules
 - Determine benchmarks for mobility based on measureable NP properties
Research Activities

Transport (Mobility Index) (Models)

Aggregation (size effect) (Models)

Reactivity (e.g. ROS)

NP-Macromolecule Interactions (NOM, polyelectrolytes, DNA, proteins)

NP-contaminant Interactions (metals, organics)

Environmental Transformations

Abiotic Physico-chemical (Photolysis, oxidation, reduction, dissolution)

Biological (microbial and higher trophic level organisms)

(Bioavailability and Toxicity) (Ecological Response)
Surface Coatings Affect Attachment

- Inhibits Aggregation
- Charge Stabilization
- Steric Stabilization

Inhibits Deposition

- Water
- Mineral surface

- Lowers Reactivity
- Decreases Toxicity

Phenrat et al., 2008
ES&T 43 1507
Empirical correlations developed to estimate α from particle and collector properties

Elimelech’s correlation (Water Res. 1992, 26, (1), 1-8)

$$\alpha = 2.57 \times 10^{-2} \, N_{col}^{1.19}$$

N_{col} represents a force balance between van der Waals attraction and electrostatic repulsion.

Bai and Tien’s correlation (J. Colloid Interface Sci. 1999, 218, 488-499)

$$\alpha = 2.53 \times 10^{-3} \, N_{Lo}^{0.70} \, N_{E1}^{-0.31} \, N_{E2}^{3.51} \, N_{DL}^{1.35}$$

Also van der Waals attraction and electrostatic repulsion but includes velocity term.
Predicted deposition of electrostatically stabilized colloids

Additional Dimensionless Parameter

Determined from Buckingham-Pi Theory

\[N_{LEK1} = \frac{d_p d_M^2 u_s \Gamma N a \rho_p}{\mu M_W} \]

Correction for [salt] on layer confirmation

\[d_M = d_M^0 \left[\frac{I}{I_{ave}} \right]^{-2/3} \]

Predicted \(\alpha \) for Coated NPs

\[\alpha_{pre} = 10^{-1.35} N_{LO}^{0.39} N_{E1}^{-1.17} N_{LEK1}^{-0.10} \]

*Refs. for the relationship between \(d \) and \(I \)