Traditional Toxicity Studies: are they applicable and how do they reflect what will happen as particles enter and move in the environment.

Rebecca Klaper
Great Lakes WATER Institute
School of Freshwater Sciences
University of Wisconsin-Milwaukee
Traditional Toxicity Studies

Standard organisms: rat, Daphnia, fathead minnow, honeybee, fly, worm

Dose them and Kill them
Reproductive and long-term studies if lucky
Traditional Toxicity Studies

How well do these predict toxicity in environment for other chemicals?

- Does not cover transformation in environment
- Does not cover fate and compartmentalization
- Does not provide information on every organism or effect
Traditional Toxicity Studies

Can we use them for nanos?
I. We can use current testing strategies for nanos with adjustments.
I. Nanoparticles can be toxic

LC50 = 5.456ppm

Mortality after Exposure to Titanium Dioxide or Fullerenes

LC50 = 1.970ppb

Lovern, SB & R Klaper. 2006.
III. The cause of this difference is debatable

Aggregation Size Matters

Lovern, SB & R Klaper. 2006.
III. The cause of this difference is debatable

• Surface chemistry?
• Solubility?
• Surface area?
• Charge?

• For science and nanomaterial development this is important---Is it important for assessing the risk?
Traditional Toxicity Studies

Can we use our toxicity studies to examine mechanism of action?
II. Nanoparticle toxicity depends on particle type (core, surface chemistry)

Klaper et al. 2009. *Environmental Pollution*
IV. Toxicity May Be Partly Due to Oxidative Stress

Traditional Toxicity Studies

Adding other measures to inform our knowledge regarding nanomaterial effects
Genomic studies

• Normalized libraries
 – Fullerene, Titanium dioxide
 – Collaboration with DGC and JGI
 – 5000 sequences each library
 – Annotation project
Differential Gene Expression Depending on Type of Nanoparticles

TiO$_2$ versus Fullerenes

- TiO$_2$: 3463
- Fullerenes: 1537
- C$_{60}$: 4710
Genes and Functional Categories of C₆₀ Exposures

• Apoptosis or Anti-apoptosis
 – Caspase 8 precurser
 – Oxidoreductase
 – Serine kinases

• Chitin processes
 – Chitinases

• Metabolism
 – Glutathione S-transferase

• Electron transport
 – Cytochrome P450’s
 – Cytochrome C oxidase
 – NADH dehydrogenase

• Translation
 – 40,60S Ribosomal

• Protein phosphorylation
Nanoparticle specific testing?: The cellular and gene expression effects of manufactured nanoparticles on primary cell cultures of rainbow trout macrophages

Rebecca Klaper
Frederick W. Goetz
Jian Chen

Great Lakes WATER Institute &
Department of Chemistry
University of Wisconsin-Milwaukee
Milwaukee, Wisconsin
Nanoparticle specific testing?:

The cellular and gene expression effects on immune response
Nanoparticles should be considered foreign
The Macrophage - key in innate immune responses

Phagocytosis (engulf)

Inflammation (increase access)

Antigen Presentation (stimulate adaptive immune system)

Cytokines (signal molecule)

Production of Reactive Oxygen (kill pathogen)
C60 Fullerene stimulates interleukin 1β transcription

IL-1β mRNA levels

<table>
<thead>
<tr>
<th>Condition</th>
<th>Relative IL-1B transcript levels</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 ug/mL C60</td>
<td>14</td>
</tr>
<tr>
<td>5 ug/mL C60</td>
<td>12</td>
</tr>
<tr>
<td>1 ug/mL C60</td>
<td>10</td>
</tr>
<tr>
<td>EC-LPS-20 ug/mL</td>
<td>8</td>
</tr>
</tbody>
</table>

Cell Viability

<table>
<thead>
<tr>
<th>Condition</th>
<th>Fluorescence</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 ug/ml C60</td>
<td>600.00</td>
</tr>
<tr>
<td>5 ug/ml C60</td>
<td>400.00</td>
</tr>
<tr>
<td>1 ug/ml C60</td>
<td>200.00</td>
</tr>
<tr>
<td>Water</td>
<td>50.00</td>
</tr>
<tr>
<td>Medium</td>
<td>50.00</td>
</tr>
<tr>
<td>Saponin</td>
<td>10.00</td>
</tr>
<tr>
<td>No addition</td>
<td>0.00</td>
</tr>
</tbody>
</table>
Traditional Toxicity Studies may not capture effects: Nanoparticles also interact with aquatic organisms

- Behavior:
- Important for energetics
- More obvious to predator, problems with mating/feeding etc.
- Easy first indicator of response
Behavioral changes over time with nanoparticle exposure

Control (r), TiO$_2$ (q), Nano-C$_{60}$ (°), C$_{60}$HxC$_{70}$Hx (l).

From Lovern, Strickler and Klaper, 2007, Environmental Science and Technology
Laboratory Testing vs. Environmental Effects

• Our basic science research can inform us as to the characteristics of nanos that make them more or less toxic
• Primary principles as to the properties that determine toxicity and fate in environment will aid in informing testing protocols/modelling
• Keep in mind that companies will not be required to identify every form of their product in the environment for reporting requirements
• Are we going to require something different for nanos than other chemicals
What have we learned?

I. Nanoparticles can be toxic—this may be at a dose that would never occur in the environment

II. Nanoparticle toxicity depends on material core structure, surface chemistry, aggregation state

III. The cause of this difference is debatable

IV. Mode of action may be partly due to oxidative stress

V. This is not the only way nanoparticles interact with organisms
Environmental Impact of Nanoparticles?

• Many nanomaterials---how can we make generalizations across particle types?
 – Goal: to make nanomaterials that are useful but cause the least amount of damage

• How can we take our laboratory testing to be applicable to the environmental condition of the nanomaterial?
Acknowledgements

This research is funded by
U.S. EPA - Science To Achieve Results (STAR) Program
Grant # RD833319

GREAT LAKES WATER INSTITUTE

UNIVERSITY OF WISCONSIN MILWAUKEE

National Science Foundation

THE CHARLES A. AND ANNE MORROW LINDBERGH FOUNDATION