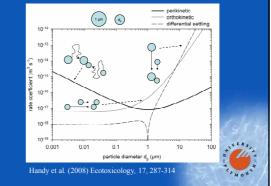
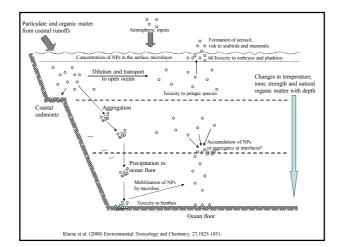
Environmental Behaviour and Effects of Nanoparticles in Organisms: Research and Data Needs for Regulatory Decision Making

Prof. Richard. D. Handy Director, Ecotoxicology Research & Innovation Centre, University of Plymouth, UK. rhandy@plymouth.ac.uk

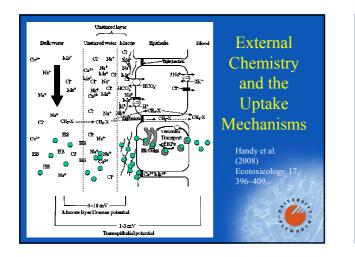
EU-USA meeting Washington March 2011

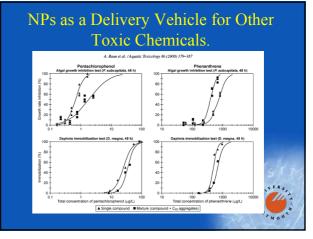
Problem Formulation in Hazard/Risk Assessment Reports

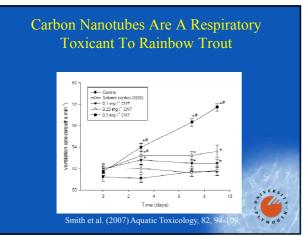


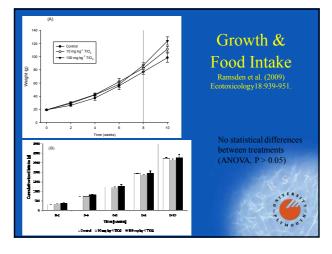

Environmental Chemistry of Nanoparticles


Fate and Behaviour Environmental concentrations Colloid particle chemistry Uptake and Bioavailability




Nanoparticles Tend to Aggregate or Agglomerate in Natural Systems

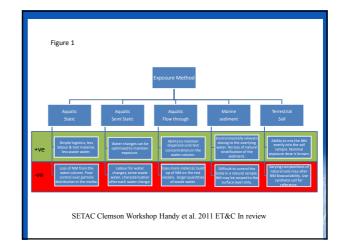

Knowledge Gaps & Research Needs: Fate and Behaviour

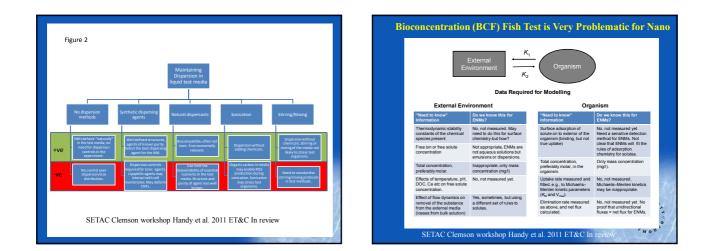

- Fate and settling behaviour modelling beyond single parameters in DLVO theory.
- User friendly computer software for predicting particle behaviour in experimental media (FW, SW, salines, mineral media, agar, etc)
- Particle size distribution in complex matrices of natural nanoscale materials (soil, food items, organisms).
- Detection limits are not sensitive enough: increase x100 fold to reach environmentally relevant concentrations.

Biological Effects of Nanoparticles

- Acute toxicity in high mg/l range.
- Fish toxicology: pathologies in all the major body systems.
- Toxic processes known: respiratory & ionoregulatory toxicity, oxidative stress, genotoxicity, etc
- Rare to find unique "nano-specific" toxic effects (vascular brain injury in fish, mechanical suffocation in invertebrates).

Brain Injury: Waterborne CNT Smith et al. (2007) Aquatic Toxicology, 82, 94-109.


Knowledge Gaps on Biological Effects


- Knowledge on some body systems is "lacking": immune system, nervous system, muscle-skeletal (locomotion).
- Species sensitivity distributions-are we using the right species to test for toxic effects?
- Environmentally relevant exposures/chronic exposures.
- Dietary uptake/food chain effects.
- No data on reptiles, many birds, marine organisms
 from different Phyla

Ecotoxicology: Regulatory Needs

- Standardized ecotoxicity tests for NPs

 SETAC Clemson workshop,
 NanoImpactNet, Dublin Workshop
- Accept that some regulatory tests are fundamentally flawed/need major modifications for nano, make a new test (e.g., BCF tests).
- "Nano" tier in environmental monitoring schemes.

	and the second
SETAC Clemson Workshop Handy et al. 2011 ET&C In review	a a a a a a a a a a a a a a a a a a a

Bacterial Cell Wall is a Formidable Barrier to MNMs

Structure	Archeae	Gram positive bacteria	Gram negative bacteria	Nano Issue
Cytoplasmic	Lipid bilayer of mainly	Lipid bilayer of mainly	Lipid bilayer of mainly	Hydrophobic layers, pore sizes
membrane	glycerol-ether lipids. Contains membrane	glycerol-ester lipids. Contains membrane	glycerol-ester lipids. Contains membrane	in proteins < 1 nm. Only lipid dispersible, or lipid coated
	spanning proteins	spanning proteins.	spanning proteins.	ENMs may associate with later.
Murein layer	Absent	Relatively thick layer, 10- 50 nm wide.	Relatively thin layer, 2-3 nm wide. Mostly	Interactions of ENMs with peptidoglycans unknown.
		Peptidoglycan, techioic	peptidoglycan. Polyanionic	Hydrophobic ENMs less likely
		acids, and polysaccharides. Polyanionic and	and hydrophilic.	to penetrate this layer.
		hydrophilic.		
Outer membrane	Absent	Absent	A thin peptidoglycan layer, 7-8 nm thick Contains	Hydrophilic ENMS likely to associate with the outer
			7-8 nm thick. Contains lipopolysaccharides.	associate with the outer membrane. Porins too small (<
			Membrane spanning porins.	Inm pore) for NPs
			Polyanionic and	
S-laver	Characteria and	Glycoprotein layer	hydrophilic. Glycoprotein layer	S-laver interactions with ENMs
5-layer	Glycoprotein coat sitting on the	covalently linked to the	covalently linked to the	not investigated. ENMs < 8 nm
	cytoplasmic membrane.	murein layer. Lattice	outer membrane. Lattice	may theoretically penetrate the
		structure with a pore size 2-8nm.	structure with a pore size 2- 8nm	lattice.
		2-8nm.	8nm.	
D 11	XX7 1 1	TT 1 / 1	T · (A	P 400
Dubli	n workshop	Handy et al	. In review (N	JanoImpactNet

appell &

Different Ways of Spiking Soils

	Adding as powder	Adding in suspension without a dispersing agent	Add in suspension with a dispersing agent
Yield.	High concentrations possible (no limit)	Low concentrations (µg/l to mg/l range)	High concentrations possible (g/l range)
Ease of preparation.	Potential occupational hazards from dusts. Short preparation (hours).	Easy to apply, but potentially long preparation time for the stock dispersion (for stirring methods, up to months).	Easy to apply, and short preparation time (hours).
Control of the dosing.	If the soil is relatively dry and mixed with dry powder then a reasonable spread of the test material in the soil occurs.	Poor reproducibility of the stock dispersion could produce variable dosing. Depending on the hydroscopic nature and viscosity of the solution, and properties of the NMN, the material may not be evenly spread in the soil sample.	Improved reproducibility of the stock dispersion, and more chance that the test material will spread evenly in the soil sample. However, dispersing agents controls are needed in the test design.
Characterisation.	Possible in the stock dispersion, but not in the soil matrix.	Possible in the stock dispersion, but not in the soil matrix.	Possible in the stock dispersion, but not in the soil matrix.
Surface modification of the test material.	Weathering effects less likely with dry mixing.	Long preparation times of stock dispersions may lead to oxidation, hydroxylation or other ehemical/physical modifications of the surface. Soil effect relative to the stock preparation effect on surface modifications are mostly unknown.	Short preparation times imply less likely to produce spontaneous changes in the particle surface, but dispersing agents will coat/modify the surface. Interaction of dispersing agent with the soil and particle surface will depend on soil type and the stability of any surface coating in the soil matrix.
Dosing for	Suitable dosing method, but	Suitable dosing method, but MNM	Suitable dosing method, particle ageing
chronic tests.	MNM may age, particle ageing control should be included in the experimental design.	may age, particle ageing control should be included in the experimental design.	may be different with dispersing agent present. Degradation of the dispersing agent is likely.

- Clemson & Dublin Workshops: Some Key Findings
- Clarify or remove the "options" for altering lighting, shaking, mixing of test media in current standard protocols e.g., the algal growth test.
- Avoid using dispersing agents if possible.
- Technology gap in practical methods for confirming exposure and particle size distribution <u>during</u> experiments.
- Microbial assays that rely on the test substance penetrating the cell may not work! (false negatives in Ames test, Comet assay, BOD assay etc).
- The BCF and similar regulatory tests that rely on "steady state"
 concentrations are potentially seriously flawed for nano (not a "steady
 state" phenomena).
- Practical solution
 - Shorter tests/different species or media
 - Additional controls for shading, mixing etc.DVLO software for predicting particle behaviour in media (Chi
 - co workers).
 - New "BCF"-like tests

Any Questions?