Nanomaterial Exposure Measurements -Challenges and Experiences- #### Charles L. Geraci, Ph.D., CIH Centers for Disease Control and Prevention National Institute for Occupational Safety and Health Nanomaterials and Human Health & Instrumentation, Metrology, and Analytical Methods November 18, 2009 ## Exposure (Dose) Measurement Challenges "Is Exposure Occurring?" - What 'contaminant' is to be measured? - Can the 'contaminant' be measured? - Are there any guidelines? - What dose measurement makes sense? - Any exposure/dose? - A specific portion of dose: total, respirable, etc? - How is exposure interpreted? ## Measuring Free Engineered Nanoscale Particulate Matter-"Nanoparticles" - The 'free particle' is the primary focus of toxicology (hazard) studies. - Definitions are 'loosely' accepted - Comfort level: long history with ultrafine particulate measurements - Human Exposure Challenge: the Engineered Nanoparticle as part of a complex exposure - What is actually encountered in the human exposure? ### Can Nanoparticles be measured? Sure. But, are you measuring the 'right' nanoparticle, and can it be done easily? #### Where do I start? The particle haystack The <u>engineered</u> nanoparticle To get the risk management process started, it's OK to measure the haystack. #### Multiple Metrics Are Being Considered In Toxicology Studies - Mass: Links to historical data, but lacks sensitivity and specificity in field exposure studies - Size distribution: More information, bur not specific in field studies and not easy in nanometer ranges - Number concentration: Fairly simple, but not specific to particles. - Surface area: Some relevance based on toxicology, technology is available, but non-specific What is the common metric? Toxicology: Mass/m³ of air Workplace: Particle number, size, mass, etc. ### The Field Experience - Methods are not 'nano material specific' - Qualitative measurements are still the norm - Quantitative measurements, when possible - What is being used and seen? #### Summary of Facilities Creating/Handling Nanomaterials | Facility
Type | Nanomaterial,
Size, Quantity | Process
Description | Controls
Present | Task | CPC
(1) | OPC
(2) | OPC
(3) | Total
Carbon
(µg/m³) | Evidence
TEM Filter
(Yes/No) | |-------------------|---|---|--|---------------------|------------|--------------------|--------------------|----------------------------|------------------------------------| | R&D
Laboratory | Carbon
Nanofibers;
<100 nm in
diameter; 500
mg/batch | Produce
composite
material. | Negative
pressure
room,
laboratory
hood and
HEPA-
filtered
vacuum | Background | 19,500 | N/A | N/A | 15–19 | No | | | | | | Weighing,
mixing | 4,000 | N/A | N/A | 64–221 | Yes | | | | | | Wet sawing | 5,000 | N/A | N/A | 1,094 | Yes | | Manufacturer | Carbon
Nanofibers; 70–
200nm
diameter; 50-
100 µm length;
10-20 Kg/shift | Chemical
Vapor
Phase
reactor.
Chemically
treat, dry
and
package. | Rooftop
exhaust
and shop
vacuum
with HEPA
filter. | Background | N/A | 12,600 | 1,000 | 12–15 | Yes | | | | | | Processing | N/A | 53,600–
134,800 | 5,400–
144,900 | 31–248 | Yes | | | | | | Drying | N/A | 84,200–
109,200 | 11,500–
98,400 | 1,839 | Yes | | | | | | Manual
Scooping | N/A | 73,200–
127,400 | 52,900–
139,500 | 1,729 | Yes | ^{1. (}P/cm3) 10-1000 nm ^{2. (}P/L)300–500 nm 3. (P/L)500–1,000 nm #### **Examples of TEM Evidence** Before and after Sonication of MWCNT Not quantitative, but to verify presence and nature of the nanomaterial Packing of CNF PBZ – Metal oxide reactor cleaning #### What is the "Exposure Measurement Story"? - Exposures are occurring - Various metrics are being used - Little specific and quantitative data - Particle counts and mass/M3 most common uniform metrics - Highly agglomerated, complex nature - Toxicology studies: better characterization and more realistic doses needed – feedback from the field needed.