### Risk Management Methods Priority Research Needs

The National Nanotechnology Initiative

> Environmental, Health, and Safety Research Needs for Engineered Nanoscale Materials

Richard Canady, PhD, DABT US Food and Drug Administration Office of the Commissioner richard.canady@fda.hhs.gov

# **Scope of Research**

#### 6. Risk Management Methods

This area comprises research on methods for risk management of nanomaterials, including research on methods to

- <u>reduce exposures</u> to potentially hazardous nanomaterials;
- improve procedures for <u>risk and accident avoidance</u>;
- improve work practices, engineering controls, and protective equipment; and
- develop procedures for <u>life cycle assessment</u> and improve understanding of potential impacts over the full life cycle, from raw material extraction through disposal and/or recycling.

# **General Background**

ECHNOLOGY

#### **Risk Management Methods for Nanomaterials**

- 24 research needs are identified in Chapter 6 Major themes help organize the areas
- Overarching concepts for risk management also expressed in Chapter 1 of the document
  - Good risk assessment is essential for good risk management
  - Research that is prioritized through value of information is an integral part of the risk management process
  - Rapid advancement in nanomaterials development necessitates an "adaptive management" approach to risk management

## **General Background**



The Presidential/Congressional Commission on Risk Assessment and Risk Management

Final Report Volume 1 1997 **General theme** 

NATIONAI

NANOTECHNOLOGY

Evaluate the appropriateness and effectiveness of current and emerging risk management approaches for identifying those nanomaterials with the greatest potential risks

#### More specific themes

- A. Understand and develop best workplace processes and environmental exposure controls
- B. Examine product or material life cycle for risk reduction choices
- C. Develop risk characterization information that allows classification for hazard properties
- D. Develop trend information to help focus research efforts
- E. Develop specific risk communication approaches and materials

Understand and develop best workplace processes and environmental exposure controls

- Evaluate accepted risk management approaches for nanomaterials
- Evaluate the opportunities for greatest potential risk reduction through minimizing hazard or exposure to nanomaterials
- Understand the efficacies of PPE against nanomaterials as exposure and hazard information evolve
- Improve understanding of the unique challenges for process design and engineering control systems applied to engineered nanoscale materials in air

# **Research Theme A (continued)**

Understand and develop best workplace processes and environmental exposure controls

- Understand the role and effectiveness of work practices and administrative controls in reducing exposures to nanomaterials as exposure and hazard information evolve
- Develop spill mitigation technologies and risk management procedures specific to nanomaterials
- Identify and evaluate the appropriate packaging requirements
- Develop filters and fabrics with improved capturing and regenerating/self-cleaning capabilities

### **Research Theme B**

# Examine product or material life cycle for risk reduction choices

- Understand the efficacies of PPE against nanomaterials as exposure and hazard information evolve
- Improve understanding of the unique challenges for process design and engineering control systems applied to engineered nanoscale materials in air
- Understand how LCA may be suitable and adaptable to engineered nanomaterials
- Determine the stages in a product's life cycle that introduce the greatest potential for risk

# **Research Theme B (continued)**

CHNOLOGY

# Examine product or material life cycle for risk reduction choices

- Determine whether any residual manufacturing wastes of concern are being created and, if so, which processes are associated with such wastes
- Where wastes of concern are being produced, determine the best methods for waste disposal
- Develop environmentally benign manufacturing processes that can reduce the potential impact of nanomaterials

## **Research Theme C**

Develop risk characterization information that allows classification for hazard properties

- Understand factors influencing flammability and reactivity
- Fully characterize the nanomaterial to determine its properties and allow for an accurate determination and classification if it is a hazardous material

### **Research Theme D**

# Develop trend information to help focus research efforts

- Understand the flow of nanomaterials through the economy and ultimate disposition
- Understand the use of nanomaterials in products
- Discern trends in effects or causality in accidents or other incidents that may relate to the sizes or novel properties of engineered nanoscale materials

# Develop specific risk communication approaches and materials

- Evaluate whether current risk communications are adequate for known risks and for risks that can be anticipated from currently available information
- Where necessary, develop effective methods to communicate risk or safety information to potentially affected populations
- Determine how best to communicate the hazard to the emergency response community under real-world accident scenarios



Is the breadth of this research category captured by the research needs identified?

• What criteria should be considered in setting research priorities?

Which research need(s) should be prioritized within this category?

Additional comments?