Measuring Exposure Levels of Drug Products Containing Nanomaterials

Katherine Tyner, Ph.D.
CDER/OPQ
US Food and Drug Administration
July 8, 2015
Disclaimer

This talk reflects the views of the author and should not be construed to represent FDA’s views or policies. The mention of commercial products, their sources, or their use in connection with material reported herein is not to be construed as either an actual or implied endorsement of such products by the Department of Health and Human Services.
Agenda

- Considerations for intentional exposure studies
- In vitro examples
- In vivo examples
Agenda

• Considerations for intentional exposure studies

• In vitro examples

• In vivo examples
An Intentional Discussion

• In the majority of instances, the administration of drug products containing nanomaterials means an intentional exposure
 – Unintentional exposure is possible and is part of a robust risk assessment

• Know the exposure has occurred
 – Material
 – Dose
 – Pharmacokinetics/Toxicity (PK/TOX)
 – ADME (adsorption, distribution, metabolism, elimination)

• Detection is still key
 – In vitro
 – In vivo models
 – Clinical
Nanomaterials in Drug Products: CDER Examples

<table>
<thead>
<tr>
<th>Platform</th>
<th>Example</th>
<th>NDA Approval</th>
<th>Indication</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liposome</td>
<td>DOXIL® (Doxorubicin)</td>
<td>1995¹</td>
<td>Cancer</td>
</tr>
<tr>
<td>Inorganic nanoparticle</td>
<td>FERRLECIT® (Sodium ferric gluconate complex)</td>
<td>1999²</td>
<td>Anemia</td>
</tr>
<tr>
<td>Protein nanoparticle</td>
<td>ABRAXANE® (Paclitaxel)</td>
<td>2005</td>
<td>Cancer</td>
</tr>
<tr>
<td>Polymer nanoparticle</td>
<td>MACUGEN® (Pegaptanib sodium)</td>
<td>2004</td>
<td>Macular degeneration.</td>
</tr>
<tr>
<td>Emulsion</td>
<td>RESTASIS® (Cyclosporine)</td>
<td>2002</td>
<td>To increase tear production</td>
</tr>
<tr>
<td>Lipid complex</td>
<td>AMPHOTEC® (Amphotericin B)</td>
<td>1996</td>
<td>Invasive aspergillosis</td>
</tr>
<tr>
<td>Nanotube</td>
<td>SOMATULINE DEPOT® (Lanreotide acetate)</td>
<td>2007</td>
<td>Acromegaly</td>
</tr>
<tr>
<td>Nanocrystal</td>
<td>TRICOR® (Fenofibrate)</td>
<td>2004³</td>
<td>Hypercholesterolemia</td>
</tr>
<tr>
<td>Micelle</td>
<td>TAXOTERE® (Docetaxel)</td>
<td>1996</td>
<td>Cancer</td>
</tr>
</tbody>
</table>

¹ First ANDA approval in 2013
² First ANDA approval in 2011
³ First ANDA approval in 2011

Tyner KT et al. WIRES Nanomedicine and Nanotechnology 2015.
Analytical Methods for Detecting Nanomaterials in Biological Systems

- Non-carbon nanomaterials have methodology for quantification and characterization
 - Detection of elemental signal & visual confirmation
 - Example: ICPMS, TEM/EDS
Untreated animal
PK/ADME/Toxicity

• Pharmacokinetics (PK) is the study of the kinetics of absorption, distribution, metabolism and excretion of drugs and their pharmacologic, therapeutic or toxic response in animals and man.

• ADME
 - Adsorption
 • How it gets in the body
 - Distribution
 • Where it goes in the body
 - Metabolism
 • How the body breaks it down
 - Elimination
 • How the body gets rid of it
PK/ADME Methods & Nanomaterials

• Analytical methods
 – Most popular techniques for small molecules are radiolabeling and bioanalytical techniques
 – Radiolabeling or fluorescently tagging nanomaterials may alter biodistribution

• Common bioanalytical techniques are not always valid for nanomaterials
 – Example: Nanomaterials interacting with filtration step or chromatography columns

• Variety of matrices
 – Blood, urine, feces, on and off-target tissues

• Questions/considerations
 – What is being measured/labeled (drug vs carrier)?
 – Does the nanomaterial remain intact?
 • How are the constituents being identified
 – Is the bioanalytical method appropriate?
 • Controls
 • Testing conditions
Detection and Quantitation of Nanomaterials in Biological Matrices

- **HPLC-MS**
 - Dendrimers, Polymers, Drugs, Metabolites, Fullerenes

- **Capillary Electrophoresis**
 - Fullerenes

- **Radiolabeling**
 - Liposomes, Dendrimers, Polymers

- **ICP-MS & Neutron Activation Analysis**
 - Metallic Nanoparticles (e.g., Gold)
 - Metal Oxides

- **Electron Microscopy**
 - EDS, EELS (Detection and confirmation of composition)

- **Optical Microscopy**
 - Raman, Hyperspectral imaging (Detection)
Agenda

• Considerations for intentional exposure studies

• In vitro examples

• In vivo examples
In Vitro Examples: Is the Method Appropriate? Controls

Naïve cells

Hyperspectral Imaging

Positive id
In Vitro Examples: Is the Method Appropriate? Design Considerations

- Mass balance & control of exposure
- Cell culture conditions influence assay results
- Artificial constraints and/or parameters may influence results
Agenda

• Considerations for intentional exposure studies

• In vitro examples

• In vivo examples
In Vivo Examples
In Vivo Example: What is Being Measured? Complementary Analysis

% ID/mL

0 500 1000 1500

TNF-Au NP PK in rats, [TNF] by ELISA; [Au] by ICP-MS

In Vivo Example: Does the Nanomaterial Remain Intact? Dual Labeling

<table>
<thead>
<tr>
<th></th>
<th>V_d (mL/kg⁻¹)</th>
<th>Mean ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ceramide</td>
<td>1020 ± 478</td>
<td></td>
</tr>
<tr>
<td>Liposome</td>
<td>63 ± 19</td>
<td></td>
</tr>
</tbody>
</table>

Zolnik, B.S. et. al. Drug Metab Dispos, 2008, 36, 1709-1715
In Vivo Example: Is the Method Appropriate? Capillary Electrophoresis

In Vivo Example: Is the Method Appropriate? Testing Considerations

- Detection
- Limits of detection
- Limits of quantification
- Nanomaterial interference
- Appropriate controls
- Well-designed studies
Conclusions

- PK/ADME determination for drug products containing nanomaterials is an evolving area

- Techniques & methods exist to detect nanomaterials within biological tissues
 - Multiple endpoints/methods

- Multiple issues and/or considerations may confound method development and analysis
 - Appropriate controls
 - Well designed studies

- Regulatory science projects continue to address these issues
 - Collaboration opportunities!
Acknowledgements

• Dr. Anil Patri, Director, NCTR-ORA Nanotechnology Core Facility

• The Nanotechnology Characterization Laboratory

• The authors would like to acknowledge the FDA White Oak Nanotechnology Core Facility for instrument use, scientific and technical assistance