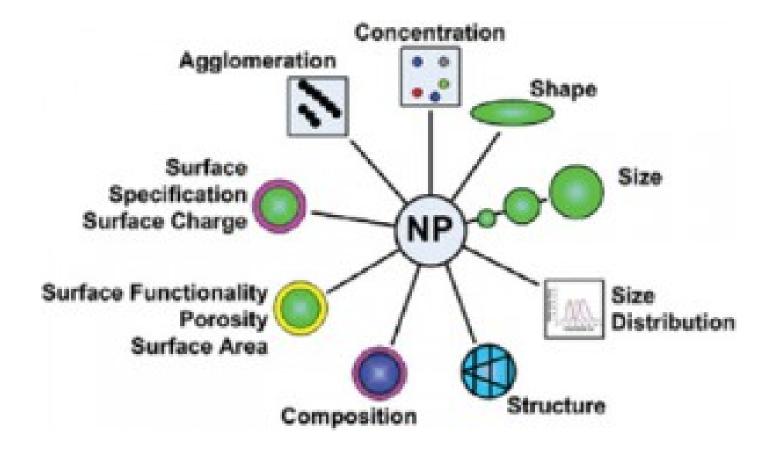


### **Strategies for Measuring Airborne Nanomaterials**

Jonathan Thornburg




## Objective

- Review the fundamentals of engineered nanomaterials (ENMs), occupational exposure assessment, and the outcomes of a workshop held in 2011 to provide a basis for developing an exposure assessment strategy
- Review advances since 2011 in the strategies for assessing occupational exposure to engineered nanomaterials (ENMs)
- Save suggestions and recommendations for future development of exposure assessment strategies until the panel discussion

## Risk Assessment Paradigm

- Risk = Exposure + Hazard
- Exposure: inhalation, dermal, ingestion (non-dietary) at a level to cause concern
- Hazard: the ENM has the physical and chemical properties to cause an adverse health outcome

### **Physicochemical Properties**



# NSF Workshop Conclusions (2011)

- Dr. Sudipta Seal and Dr. Barbara Karn hosted a NSF sponsored workshop "Nano Workshop: Safety aspects of Nanostructures and Infrastructure for Sustainability"
- State of the Science
  - Portable instrumentation becoming available
  - Metrology and characterization methods developed
  - Strategies for task based, spatial-temporal mapping, and emissions estimation exposure assessment available
- Challenges and Needs
  - Exposure assessment strategy development, standardization, and validation lacking for ENMs
  - Merge toxicology data with engineering/science advances to develop new devices that provide information relevant to health
  - Multifunctional devices: many physicochemical characteristics, fast, inexpensive, and small

## **Exposure Characterization Questions**

- What is the type of ENM in the occupational environment?
- What is the source of exposure?
- What is the persistence of the ENMs?
- Are the ENMs physically and chemically stable?
- Any sources of natural or anthropogenic nanoparticles that could confound ENM exposure measurements?
- Is there a potential for exposure misclassification?
- What are the likely exposure routes?
- What is the suitable exposure metric (mass, number, area, etc.)?
- How do ENMs translocate across the body?
- What are the key mechanisms of toxicity?
- Answers will provide insight into the exposure assessment design, the types of instruments used, and the need for real-time or offline data

### Exposure Assessment Strategy: Approaches

## NEAT

- Nanoparticle Emission Assessment Technique (Methner et al., 2010)
- Identify potential sources of emissions using a CPC and OPC
  - Two methods span the size range of ENMs: 10 nm to > 1000 nm
- Collect air samples on filter media for offline analysis to differentiate ENMs from other nanomaterials
  - Mass concentration, chemical composition, elemental analysis, size distribution, morphology

## AIHA Based Framework

- Ramachandran et al (JOEH, 2011) adapted the AIHA general framework for exposure assessment to be specific to ENMs
- Intended to be a practical guide for managing ENM risks in workplaces
- Identifies jobs or tasks with high exposures while requiring a modest level of resources
- Features
  - Workplace characterization
  - Assessment of exposure potential
  - Accounts for background aerosols
  - Constructs similarly exposed groups
  - Selection of appropriate instrumentation
  - Providing appropriate choice of exposure limits
  - Decision matrix for making exposure management decisions

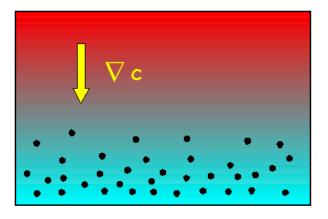
#### **Exposure Assessment Strategy: Devices**

## Common Devices



# Highlights of European Union Research (2013)

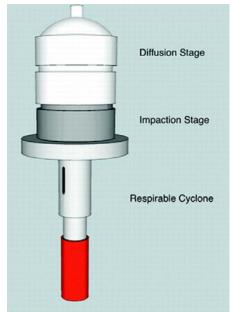
|                                                  | Metric                                                            | Size Range              | ENM<br>Identification | Other                                                                                                      |
|--------------------------------------------------|-------------------------------------------------------------------|-------------------------|-----------------------|------------------------------------------------------------------------------------------------------------|
| Low-Cost Total<br>Active Surface<br>Area Monitor | Surface area                                                      | 0.01 to 3 $\mu\text{m}$ | No                    | Personal or stationary                                                                                     |
| NanoGuard                                        | Number concentration<br>Surface area                              | < 20 to 400 nm          | Offline               | Real-time                                                                                                  |
| NanoGuard<br>Samplers                            | Size distribution and<br>concentration,<br>morphology, toxicology | < 20 to 400 nm          | Offline               | ESP, TP, Cyto-TP                                                                                           |
| Real-time CNT<br>Monitor                         | Number concentration                                              | Not specified           | CNTs only             | Stationary or personal                                                                                     |
| Personal Nano-<br>sampler                        | Mass concentration and size distribution                          | 2 nm to 5 $\mu\text{m}$ | Offline               | Diffusion separation sub-300 nm                                                                            |
| Pre-separators                                   | Not applicable                                                    | 5 nm to 5 $\mu m$       | Not applicable        | Diffusion and/or aerodynamic<br>separation to physiologically<br>relevant portions of respiratory<br>tract |


Source: www.nano-device.eu

## NIOSH and MSHA Devices

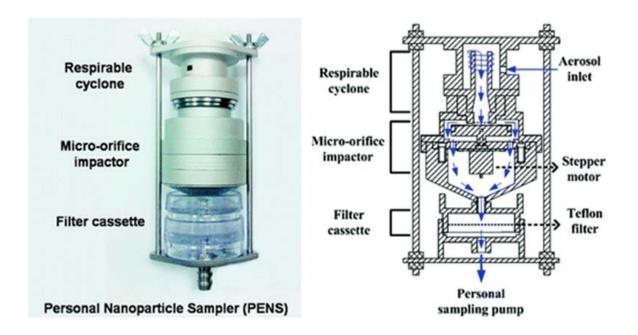
- Airtec (FLIR) Diesel Particulate Monitor developed in 2011 based on NIOSH research (Noll et al., 2007)
  - Noll et al., (2013) validated the device
  - Measures elemental carbon using laser extinction (transmittance) at 650 nm through a Teflon filter
- Thermo Scientific Personal Dust Monitor 3700
  - Tapered Element Oscillating Membrane (TEOM) based device to provide real-time data
  - Does not distinguish ENM from other types of aerosols

## **Thermal Precipitator**


- Multiple devices are available
  - Azong-Wara et al. (J. Nanopart. Res., 2009)
  - Thayer et al. (Aerosol Sci & Tech, 2011)
  - Miller et al. (Aerosol Sci & Tech, 2012)
- An extremely high temperature gradient across a small gap produces thermophoretic diffusion and ENMs deposition on a substrate.
- Substrate analyzed by TEM to count, size and classify the ENMs



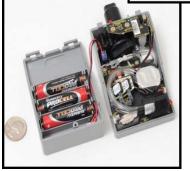



## Nanoparticle Respiratory Dose (NRD) Sampler

- The NRD has three components (Cena et al., ES&T, 2011)
  - A 25-mm respirable aluminum cyclone (Model 225-01-01, SKC Inc., Eighty Four, PA) to remove particles larger than the respirable size
  - An impaction stage to remove particles larger than 300 nm
  - A diffusion stage consisting of a stack of mesh screens designed to mimic the collection efficiency of the human respiratory tract
- Offline analysis for counting, sizing
- Personal sampler



## Personal Nanoparticle Sampler (PENS)


- C.J. Tsai lab developed the PENS (Tsai et al., ES&T, 2012)
- Uses respirable cyclone size select at 4  $\mu m$  and a rotating plate impactor to separate at 100 nm
- Integrated with a 37 mm polycarbonate cassette



### **Other Devices**

- Portable ultrafine particle counter developed by U. Cincinnati under a NIEHS grant (Ryan et al., Sci. Total Environ., 2015)
  - Developed for children but applicable to occupational exposure
- MicroPEM developed by RTI (Rodes et al., in preparation)
  - < 240 g with batteries</p>
  - Real-Time PM detection ~3 to 15,000 µg/m<sup>3</sup>
  - Integrated referee filter collection
  - Onboard accelerometer to sense movement
  - Easily modified for occupational exposure assessment





#### **Exposure Assessment Strategy: Future**

## What Should Be Measured?

- Laboratory versus occupational evaluations
  - Lab = exposure identification, Occupational = exposure quantification
- Personal level, real-time exposure
  - Job specific exposures, concentration mapping
- ENM discrimination from other nanoparticles
  - Area monitoring, pre/post activity sampling
- ENM identification
  - Offline analysis
- Data quality indicators
  - Compliance with exposure assessment protocol to minimize exposure misclassification
  - Confidence in the accuracy and precision of the data by collecting secondary data (temperature, relative humidity, pressure differentials, accelerometry, calibration factors, etc.)

## How Far Have We Advanced Since 2011?

- Exposure assessment strategy development, standardization, and validation lacking for ENMs
  - Strategy development: 

     but are updates needed considering rapid evolution of exposure assessment devices?
  - Standardization: ? Are existing strategies widely used?
  - Validation: ? Adoption of strategies will validate their performance
- Merge toxicology data with engineering/science advances to develop new devices that provide information relevant to health
  - Progress limited to development of a few devices that measure physiologically relevant exposure concentrations
- Multifunctional devices: many physicochemical characteristics, fast, inexpensive, and small
  - Minimal progress outside of CNTs, especially for fast differentiation of ENMs from other nanoparticles

#### **Jonathan Thornburg**

Director of Exposure and Aerosol Technology 919.541.5971 jwt@rti.org