An Exploration of Some Capabilities and Limitations of spICP-MS

Karen E. Murphy and Antonio R. Montoro Bustos

Chemical Sciences Division Material Measurement Laboratory National Institute of Standards and Technology Gaithersburg, MD USA

July 7, 2015

Workshop on Quantifying Exposure to Engineered Nanomaterials (QEEN) from Manufactured Products Arlington, Virginia

National Institute of

Standards and Technology U.S. Department of Commerce

<u>Inductively</u> <u>Coupled</u> <u>Plasma</u> <u>Mass</u> <u>Spectrometry</u>

Powerful tool for elemental analysis

- ✓ Extremely high sensitivity and elemental specificity
- Multi-elemental capabilities
- ✓ Direct isotopic information

and when operated in single particle mode...

✓ Easy coupling with different separation techniques

✓ Particle Size and Size Distribution

- Particle Number Concentration
- ✓ Ionic Content

- Dwell time: 10 ms
- Flux, 100 135 particles per min; 3 to 6 min
 - ▶ 18, 0000 /mL
- Particle pulses distinguished from the background using a five times standard deviation (5σ) criterion (Tuoriniemi, J., Cornelis, G., Hassellov, M., Anal. Chem. (2012) 84:3965-3972.)

N of spikes \propto particle N concentration

 $I \propto m_p$

```
m_{p=} \pi d^3 \rho/6
```

 $\mathsf{d}_{\rm p} = \sqrt[3]{(6m_{\rm p}/\pi\rho)}$

Method validation is required

- Reproducibility and accuracy of particle size, particle size distribution and dissolved silver (Ag) content of NIST RM 8017 PVP stabilized AgNPs
 - Kragten Spreadsheet approach to examine and combine uncertainty components
- Size distribution of gold (Au) NPs in several commercially available suspensions
 - Validation with high-resolution scanning electron microscopy (HR-SEM)
- Detection of nanosilver in textiles

Number of spICP-MS Papers

Calibration of mass/size by spICP-MS

- Nanoparticle reference materials
 - Few available
- Micro droplet calibration
 - Requires specialized instrumentation
- Standard solution calibration
 - Relatively easy to implement...

Pace H. E., Rogers N. J., Jarolimek C., Coleman V. A., Higgins C. P., Ranville J. F., Anal. Chem. (2011) 83:9361–9369

Requires accurate transport efficiency

Impact of Transport Efficiency

Kragten spreadsheet – a tool to calculate the uncertainty of a measurement

Quantity Description	Quantity Name, Symbol	Quantity Value	Standard Uncertainty, <i>u</i> ;	Type of Uncertainty Assessment	Relative <i>u</i> _i (%)	Degrees of Freedom, _{Vi}
Meas.Transport Efficiency	η _n	5.00	0.10	В	2.00%	999999999
C Ag+ solution (μg/kg)	C Ag ⁺	7.953	0.040	А	0.50%	999999999
Uptake rate (g/min)	q _{liq}	0.1743	0.00048	А	0.28%	3
Measured signal of Ag+ Stnd soln (cour	IAg⁺	2,226.9	1.46	А	0.07%	17958
Bkg counts per dwell, water	I _{bkg} Ag ⁻	0.86	0.34	А	39.43%	17978
Measured signal of Ag NP in AgNP Unk	I _p AgNP <i>unkn</i>	376.67	11.47	А	3.05%	361
Bkg counts per dwell, AgNP unknown	I _{bkg} Ag	2.39	0.12	А	5.04%	17600
Density Ag (g/cm3)	ρAg	10.49	0.0064	В	0.06%	999999999

		u(ηn)	u(C Ag+)	u(qliq)	u(I Ag+)	u(lbkgAg+)	(lpAgNPunkn	u(lbkgAg)	u(ρ Ag)	
		0.10	0.040	0.00048	1.46	0.34	11.47	0.12	0.0064	
	Vi	9999999999	999999999	3	17958	17978	361	17600	9999999999	
Quantity Name, Symbol	Quantity Value		Quantity Value + <i>u</i> _i							
ηn	5.00037	5.10037	5.00037	5.00037	5.00037	5.00037	5.00037	5.00037	5.00037	
C Ag+	7.95254	7.95254	7.99224	7.95254	7.95254	7.95254	7.95254	7.95254	7.95254	
qliq	0.17434	0.17434	0.17434	0.17483	0.17434	0.17434	0.17434	0.17434	0.17434	
/Ag+	2226.88364	2226.88364	2226.88364	2226.88364	2228.34000	2226.88364	2226.88364	2226.88364	2226.88364	
lbkg Ag+	0.86462	0.86462	0.86462	0.86462	0.86462	1.20558	0.86462	0.86462	0.86462	
lp AgNP unkn	376.67129	376.67129	376.67129	376.67129	376.67129	376.67129	388.14200	376.67129	376.67129	
lbkg Ag	2.38676	2.38676	2.38676	2.38676	2.38676	2.38676	2.38676	2.50707	2.38676	
ρ Ag	10.49000	10.49000	10.49000	10.49000	10.49000	10.49000	10.49000	10.49000	10.49635	
MF Value, Y	70.72	71.19	70.84	70.79	70.71	70.73	71.44	70.71	70.71	
		0.46833	0.11749	0.06528	-0.01542	0.00361	0.71521	-0.00758	-0.01427	c _i u _i
		0.21934	0.01380	0.00426	0.00024	0.00001	0.51153	0.00006	0.00020	(c _i u _i) ²
Standard Uncertainty, <i>u</i> _c	0.87	29.3%	1.8%	0.6%	0.03%	0.002%	68.3%	0.01%	0.03%	rel (c _i u _i) ²
Degrees of Freedom, v	768									
Coverage Factor, <i>k</i>	1.96									
Expanded Uncertainty, U	1.70	2.40%								

National Institute of Standards and Technology • U.S. Department of Commerce

Impact of Transport Efficiency

Kragten spreadsheet – a tool to calculate the uncertainty of a measurement

Quantity Descrip	otion	Quantity Name, Symbol	Quai Val	ntity ue	Si Uno	tandard certainty, <i>u _i</i>	Type o Uncertai Assessn	of R inty nent	elative <i>u_i</i> (%)	Degree: Freedon	s of n, <i>v</i> _i
Meas.Transport Effi	iciency	η _n		5.00		0.50	В		10.00%	9999999	999
C Ag+ solution (µg/	kg)	$C \operatorname{Ag}^+$		7.953		0.040	А		0.50%	9999999	999
Uptake rate (g/min)	q liq		0.1743	0	0.00048	А		0.28%	3	
Measured signal of	Ag+ Stn	IAg^+	2	,226.9		1.46	А		0.07%	17958	3
Bkg counts per dwe	ll, wate	I _{bkg} Ag [⁺]		0.86		0.34	А		39.43%	17978	3
Measured signal of	Ag NP i	I _p AgNP unk	n e	376.67		11.47	А		3.05%	361	
Bkg counts per dwe	II, AgNF	I _{bkg} Ag		2.39		0.12	А		5.04%	17600)
Density Ag (g/cm3)	, 0	ρAg		10.49		0.0064	В		0.06%	9999999	999
		μ(ηn)	u(C Ag+)	u(qlic	1)	u(I Ag+)	u(lbkg Ag+)	(Ip AgNP unk)	n u(lbkgAg)	u(ρ Ag)	
		0.10	0.040	0.0004	48	1.46	0.34	11.47	0.12	0.0064	
	v i	9999999999	9999999999	3		17958	17978	361	17600	9999999999	
Quantity Name, Symbol	Quantity Value					Quantity V	alue + <i>u</i> _i				
Ŋп	5.00037	5.10037	5.00037	5.000	37	5.00037	5.00037	5.00037	5.00037	5.00037	
C Ag+	7.95254	7.95254	7.99224	7.952	54	7.95254	7.95254	7.95254	7.95254	7.95254	
qliq	0.17434	0.17434	0.17434	0.174	83	0.17434	0.17434	0.17434	0.17434	0.17434	
/Ag+	2226.8836	4 2226.88364	2226.88364	2226.88	364	2228.34000	2226.88364	2226.88364	2226.88364	2226.88364	
lbkg Ag+	0.86462	0.86462	0.86462	0.864	62	0.86462	1.20558	0.86462	0.86462	0.86462	
lp AgNP unkn	376.6712	376.67129	376.67129	376.67	129	376.67129	376.67129	388.14200	376.67129	376.67129	
lbkg Ag	2.38676	2.38676	2.38676	2.386	76	2.38676	2.38676	2.38676	2.50707	2.38676	
ρ Ag	10.49000	10.49000	10.49000	10.490	000	10.49000	10.49000	10.49000	10.49000	10.49635	
MF Value, Y	70	.72 71.19	70.84		70.79	70.71	70.73	71.44	70.71	70.71	
		0.46833	0.11749	0.065	28	-0.01542	0.00361	0.71521	-0.00758	-0.01427	c _i u _i
		0.21934	0.01360	0.0042	26	0.00024	0.00001	0.51153	0.00006	0.00020	(c _i u _i) ²
Standard Uncertainty, <i>u</i> c	0.87	29.3%	1.8%	0.6%	6	0.03%	0.002%	68.3%	0.01%	0.03%	rel (c _i u _i)²
Degrees of Freedom, v	768										
Coverage Factor, <i>k</i>	1.96					<u> </u>					
Expanded Uncertainty, U	1.70	2.40%									

Impact of Transport Efficiency

Kragten spreadsheet – a tool to calculate the uncertainty of a measurement

Quantity Descript	ion	Quantity Name, Symbol	Quantity Value	Standa Uncertain <i>u</i> _i	rd Ty nty, Und Ass	ype of certainty essment	Relative <i>u_i</i> (%)	Degree: Freedon	s of 1, _{Vi}
Meas.Transport Effic	ciency η	n	5.	00 0.50		В	10.00%	9999999	999
C Ag+ solution (µg/k	g) C	Ag ⁺	7.9	53 0.040		А	0.50%	9999999	999
Uptake rate (g/min)	9	liq	0.17	43 0.0004	8	А	0.28%	3	
Measured signal of A	Ag+ Stn I	Ag ⁺	2,226.	9 1.46		А	0.07%	17958	3
Bkg counts per dwel	l, wate l	_{bkg} Ag [⁺]	0.8	6 0.34		А	39.43%	17978	3
Measured signal of A	Ag NP i I	AgNP unkn	376.6	7 11.47		Α	3.05%	361	
Bkg counts per dwel	I, AgNF I	_{kg} Ag	2.3	9 0.12		А	5.04%	17600)
Density Ag (g/cm3)	ρ	Ag	10.4	49 0.006 4	1	В	0.06%	9999999	999
7 8 (8, 7									
		<u>u(ղn)</u>	u(C Ag+)	u(qliq)	u(I Ag+)	u(lbkg Ag+)	(lp AgNP unkn	u(lbkgAg)	u(ρ A g)
		0.50	0.040	0.00048	1.46	0.34	11.47	0.12	0.0064
	v_i	999999999	999999999	3	17958	17978	361	17600	999999999
Quantity Name, Symbol	Quantity Value				Quantity V	alue <mark>+</mark> u _i			
ηп	5.00000	5.50000	5.00000	5.00000	5.00000	5.00000	5.00000	5.00000	5.00000
C Ag+	7.95254	7.95254	7.99224	7.95254	7.95254	7.95254	7.95254	7.95254	7.95254
qliq	0.17434	0.17434	0.17434	0.17483	0.17434	0.17434	0.17434	0.17434	0.17434
I Ag+	2226.8836	4 2226.88364	2226.88364	2226.88364	2228.34000	2226.88364	2226.88364	2226.88364	2226.88364
lbkg Ag+	0.86462	0.86462	0.86462	0.86462	0.86462	1.20558	0.86462	0.86462	0.86462
lp AgNP unkn	376.6712	9 376.67129	376.67129	376.67129	376.67129	376.67129	388.14200	376.67129	376.67129
lbkg Ag	2.38676	2.38676	2.38676	2.38676	2.38676	2.38676	2.38676	2.50707	2.38676
ρAg	10.4900	10.49000	10.49000	10.49000	10.49000	10.49000	10.49000	10.49000	10.49635
MF Value, Y	70	.72 73.00	70.84	70.79	70.70) 70.72	2 71.44	70.71	70.71
		2.28285	0.11749	0.06528	-0.01542	0.00361	0.71519	-0.00758	-0.01427
		5.21139	0.01380	0.00426	0.00024	0.00001	0.51150	0.00006	0.00020
Standard Uncertainty, $u_{\rm c}$	2.40	90.8%	0.2%	0.1%	0.00%	0.000%	8.9%	0.00%	0.00%
Degrees of Freedom, v	45105								
Coverage Factor, <i>k</i>	1.96								
Expanded Uncertainty, U	4.70	6.64%							

Ways to Measure Transport Efficiency

Particle Size Method Particle Frequency Method

Pace et al., Anal. Chem. (2011) 83:9361

Require monodispersed NP standard RM size and PNC or analyte concentration

 $\eta_n = \frac{counts \ per \ mass \ Dissolved}{counts \ per \ mass \ NP \ RM} \qquad \eta_n = \frac{f(Ip)}{qliq \ * PNC \ NPRM}$

- spICP-MS no longer an independent method
- Accuracy dependent on accuracy of assigned particle size and concentration

Size Method: (56 ± 2.9)nm (5 % rel.)

> ± 16 % rel. *u_c* in T.E.

Freq Method: (56 ± 2.9)nm (5 % rel.) (51.86 ± 0.32) µg/g (0.6 % rel.)

<u>RM8013</u> Technique	Particle Size,nm	Uncertainty (<i>u_c</i>)			
AFM	55.4	0.15			
SEM	54.9	0.20			
TEM	56.0	0.25			
DMA	56.3	0.75			
DLS (BS 173°)	56.6	0.70			
SAXS	53.2	2.7			
Combined u_c : 2.9					

± 10 % rel. *U* in spICP-MS diameter for RM 8017

Reproducibility of spICP-MS Measurements of Size and Dissolved Ag Content

Reproducibility of spICP-MS Measurements of Size and Dissolved Ag Content

2.5E07 fold dilution of RM 8017 for spICP-MS analysis dilutes ionic signal

Reproducibility of spICP-MS Measurements of Size and Dissolved Ag

Content

2.5E07 fold dilution of RM 8017 for spICP-MS analysis
dilutes ionic signal

Vial	Size ^a , nm (N)	Ag⁺ Fraction (%) (spICP- MS)	Ag⁺ Fraction (%) (IDA) ^b
1	68.65 (297)	5.6	
2	68.55 (275)	7.0	2.9
3	69.18 (362)	2.9	2.8
4	70.42 (256)	1.2	3.3
Mean	69.20	4.2	3.0
SD	0.86	2.6	0.3
U	7.0		

^aTrimmed Mean; transport efficiency by particle size method

spICP-MS results for RM 8017 and Comparison to other sizing

methods

- Generally, good agreement with AFM and USAXS
- Differences between TEM and spICP-MS for solution based calibration of size using frequency method to measure transport efficiency

Materials: Commercial AuNPs Suspensions

Validation of spICP-MS for Size/Size Distribution

Measurements

Si chips 5x5 mm

ImageJ software

FEI Helios Dual-Beam Microscope

- □ Key instrument parameters: 15 kV, 86 pA, 30 s, 3.5 mm. Magnification 15k 100k
- □ <u>500-1000 NPs</u> analyzed per sample, n=6
- □ Citrate and PVP coated AuNPs (negative): <u>http://ncl.cancer.gov/NCL_Method_PCC-15.pdf</u>
 - □ Oxygen Plasma Cleaning + Aminopropyldimethylethoxysilane for Si chips functionalization
- PEG and BPEI coated: direct deposition on Si chip

<u>spiCP-MS:</u> > ThermoFisher X-7 and X-II quadrupole ICP-MS

- > 10 ms dwell time, 360 s acq. Time, 0.5 mL min⁻¹ flow rate
- > Particle number conc.: $15 \times 10E^7$ particles L⁻¹, <u>1000 NPs</u> per sample, n = 3 to 6
- Transport efficiency calculated by particle size method

Results: Negatively Charged Commercial AuNP Suspensions

Citrate 100 nm and PVP coated AuNPs (negative): Same SEM Sample Preparation : Oxygen Plasma Cleaning + Aminopropyldimethylethoxysilane for Si chips functionalization, n=6

PVP 60 nm

	Mean Size (nm) * *					
<u>AuNPs</u>	HR-SEM	<u>spICP-MS</u>	TEM supplier			
Citrate 100 nm	96.7 ± 0.3	101.7 ± 0.7	104.0 ± 2.6			
PVP 30 nm	29.3 ± 0.1	29.7 ± 0.2	29.7 ± 0.5			
PVP 100 nm	94.8 ± 0.2	92.7 ± 0.6	100.0 ± 1.5			
PVP 60 nm	59.1 ± 0.1	58.3 ± 0.2	55.9 ± 1.6			

** Expanded uncertainty of the mean for 95% coverage; only measurement repeatability.

"Successful agreement between spICP-MS and HR-SEM for negatively charged coating AuNP size distribution"

Results: Negatively Charged Commercial AuNP Suspensions

** Expanded uncertainty of the mean for 95% coverage; only measurement repeatability.

"Successful agreement between spICP-MS and HR-SEM for negatively charged coating AuNP size distribution"

Results: Positively Charged and Neutral Commercial AuNP

Suspensions

PEG 60 nm

	Mean Size (nm) * *					
<u>AuNPs</u>	HR-SEM	<u>spICP-MS</u>	TEM supplier			
BPEI 30 nm	31.2 ± 0.1	30.9 ± 0.1	30.9 ± 0.6			
BPEI 60 nm	60.1 ± 0.2	59.8 ± 0.3	63.7 ± 1.5			
BPEI 100 nm	94.6 ± 0.3	94.1 ± 0.3	98.0 ± 2.0			
PEG 60 nm	58.7 ± 0.3	57.0 ± 0.4	65.3 ± 1.6			

** Expanded uncertainty of the mean for 95% coverage; only measurement repeatability.

"Successful agreement between spICP-MS and HR-SEM for positively and neutrally charged coating AuNP size distribution"

Elemental and Chemical Analysis of Commercial Textiles Claiming a nAg component

Seven Textiles

Conductive fabric (S#5, 6) "nano silver technology" Silver-plated

Medical fabric (S#7, 8) "nanocrystaline coating"

Sport fabric (S#9) "silver nano ions"

Sample	XPS		EDS	ICP-MS
	Wt % Ag	Metallic?	Ag Detected ?	Wt % Ag
2	ND	UKN	No	1.2E-6
4	ND	UKN	No	0.0024
5-side1	53.6	Yes	Ves	10.8
5-side-2	48.4	Yes	103	
6-side-1	42.5	Yes	Yes	9.2
6-side-2	38.2	Yes		
7-side-1	71.8	No	Yes	10.9
7-side-2	79.3	No		
8-side-1	72.9	No	Yes	12.3
8-side-2	79.6	No		
9-stiching	<0.1	UKN	No	0.0021
9-front	<0.1	UKN	140	0.0021

XPS Detected Ag in 5/7 samples Measureable in 4/7 Two samples composed of Ag⁰ EDS

Detected Ag in 4/7 samples

ICP-MS Measurable Ag in 7/7 samples ppb to % levels

EDS by D. Holbrook ICPMS by K. Murphy and J XPS by J. Gorham

- Place in test tube in 10 mL water (ph 5.5)
- sonicate for 30 min. in ice bath
- Measure recovery
- spICP-MS analysis:
 - ➢ 0.45 µm PVDF filter
 - ➢ dilute to ≈1.8 E4 particles/mL
 - > ≈12 ppt
 - Particle pulses distinguished from the background using a 5σ criterion

A Note of Caution!

- Variable size detection limit
 - 15 nm for Ag without Ag⁺
- Proper dilution is critical to avoid coincidence
 - Unknown AgNP/Ag⁺ ratio
 - Unknown target particle size
- Silver is reactive
 - Ag⁰ forms Ag⁺
 - Ag⁺ forms Ag⁰
- Distribution in solvent may not match distribution on textile

- SEM images of commercial textiles
- No real evidence of AgNPs

- SEM images of commercial textiles
- No real evidence of AgNPs

- SEM images of commercial textiles
- No real evidence of AgNPs

- SEM images of commercial textiles
- No real evidence of AgNPs

- SEM images of commercial textiles
- No real evidence of AgNPs

- SEM images of commercial textiles
- No real evidence of AgNPs

AFM images of commercial textiles

Surface devoid of AgNP contribution

0.00 nm

- Use to measure limits of quantitation for each method and apply lessons learned to better approach the characterization of 'unknowns'
- > Approach:
 - Employ citrate reduction technique designed for 20 nm AgNP suspensions
 - Develop multiple loadings plus a blank control
- Results
- All 5 test threads were
- loaded with varying silver
- concentrations.
- A distinct color change to light
- yellow was observed. The control
- remained a white color

- Use to measure limits of quantitation for each method and apply lessons learned to better approach the characterization of 'unknowns'
- > Approach:
 - Employ citrate reduction technique designed for 20 nm AgNP suspensions
 - Develop multiple loadings plus a blank control
- Results
- All 5 test threads were
- loaded with varying silver
- concentrations.
- A distinct color change to light
- yellow was observed. The control
- remained a white color
- Coloration were consistent with AgNP suspensions of varying concentrations.

High Starting [Ag⁺] 8E-04 mol/L Low Starting [Ag⁺] 1.9E-05 mol/L

Low Starting [Ag⁺]

1.9E-05 mol/L

100 nm

MML-S4700 3.0k\

- All 5 test threads were
- loaded with varying silver
- concentrations.
- A distinct color change to light

mm x250k SE/U1 5/22/2014 14:20

- yellow was observed. The control
- remained a white color
- Coloration were consistent with AgNP suspensions of varying concentrations.

Imaging by TM Nguyen

- remained a white color
- Coloration were consistent with AgNP suspensions of varying concentrations.

NIST Special Publication 1200-8

Preparation of silver nanoparticle loaded cotton threads to facilitate measurement development for textile applications

Version 1.0

J. M. Gorham K. Murphy J-Y Liu D. Tselenchuk G. Stan T. M. Nguyen R.D. Holbrook M. Winchester R.F. Cook V.A. Hackley

Imaging

spICP-MS Analysis of Test Threads

0.018 Wt % Ag

0.3 Wt % Ag

Conclusions

- spICP-MS is a promising method for the characterization of particle size/size distribution of test materials and RM's
 - Applicable to concurrent measurement of number concentration and ionic content, as well, but capabilities have not yet been rigorously examined at NIST
- For solution based calibration, uncertainty analysis reveals that variance in the transport efficiency provides the largest contribution to the total uncertainty of the spICP-MS measurement
 - Differences between the size method and frequency method for determining the transport efficiency were observed; size method yielded lower bias
- Solution based method application to solid samples requires development of extraction methods that do not alter the particle size distribution
- > Method requires a priori knowledge about particle composition, shape and size
- At present, size dynamic range is limited: best case is AuNPs, 10 nm to 80 nm (standard conditions); 200 nm (reduced sensitivity conditions)

Acknowledgements and Information

> <u>RM 8017</u>

Project coordination: Rob MacCuspie, Vince Hackley, and Justin Gorham AFM: Rob MacCuspie TEM: John Bonevich USAXS: Andrew Allen spICP-MS: Karen Murphy and Jingyu Liu

- Commercial AuNP Suspensions HR-SEM: Antonio Montoro Bustos, Kavuri P. Purushotham, András E. Vladár spICP-MS: Antonio Montoro Bustos
- > <u>Textiles</u>

Project coordination: Justin Gorham, Vince Hackley, Robert Cook, Debra Kaiser XPS: Justin Gorham

SEM: Dave Holbrook and TM Nguyen; AFM: G. Stan

spICP-MS: Karen Murphy and Jingyu Liu

