Quantification of carbon nano materials in complex matrices

Paul Westerhoff, PhD, PE, BCEE Pierre Herckes & Takayuki Nosaka Arizona State University (Tempe, AZ) Kyle Doudrick (University of Notre Dame)

Nano-Go Funding: RES018801Z

Outline

- 1D to 3D Types of Carbon \bullet
- Range of analytical lacksquaretechniques & response ranges
- Standards & Analytics
- **Extraction / Separation** igodol**Strategies**
- Paths forward for Exposure monitoring

DEPARTMENT OF HEALTH AND HUMAN SERVICES s for Disease Control and Prew titute for Occupational Safety and Healt

Types of Carbon Nanomaterials

Wide Ranges of surface Functionalities can occur

Fullerol (Hydroxy-fullerene)

Graphene-Oxide

Quantification Techniques

Technique	C60 & nC60	FLG & GO	SW- & MW-CNT
Light scattering		v	
Absorbance			
- UV	✓		
- NIR fluorescence			v
- Gel electrophesis			
HPLC-UV (FFF-UV)	✓		
LC-Mass Spec	v		
Thermal			
- Combustion / CO/CH4	~	~	v
- Microwave induced heat			V
- TGA mass loss		✓	V
¹⁴ C			
Scintillation		V	v
Thermal-Mass spec	V		v
Raman spec.		v	¥
Photo-acoustic/thermal			V
Single particle ICP-MS of catalyst			LC 🤅

Examples – Fullerenes (C₆₀)

- Light scattering ($\lambda_{347 \text{ nm}}$)
- Liquid phase combustion (TOC)
- Thermal optical transmittance
- HPLC plus λ_{347 nm}
 LC/MS using 720 m/z

Improving specificity and lower detection limits

C₆₀ analysis by HPLC-UV or –MS Requires Solvent Extraction

Fig. 3 Recovery of C_{60} from synthetic and human urine matrices using LLE and SPE. C_{60} was spiked to a final concentration of 180 µg/L and allowed to equilibrate in the media overnight. *Error bars* indicate the variability in quantification between three extractions of each sample matrix

Benn et al., ABC, 2011

Application of LC/MS

Fullerenes From Cosmetics

- A common cosmetic formulation disperses fullerenes using polyvinylpyrrolidone (C₆₀-PVP)- see TEM
- LC/SM was used to separate and specifically detect fullerenes (C₆₀ and C₇₀) from interfering substances typically present in cosmetics (e.g., castor oil).
- C₆₀ was detected in 4/5 commercial cosmetics ranging from 0.04 to 1.1 μg/g, and C₇₀ was qualitatively detected in 2/5 samples.
- A single-use quantity of cosmetic (0.5 g) may contain up to 0.6 µg of C₆₀ and demonstrates a pathway for human exposure to engineered fullerenes.

Benn et al., Environ. Poll. (2011)

Fullerols (C₆₀(O), etc)

- Light scattering ($\lambda_{347 \text{ nm}}$)
- Liquid phase combustion (TOC)
- Thermal optical transmittance
- LC/MS using 720 m/z

Fullerol – Comparison of Detection Methods

single quad scan, Q1 multiple ion monitoring, MI MS with multiple reaction monitoring, MRM

No standards available

	R ^{2 a}	MDL ^b [pg/mL]	RSD ^c	SRFA ^d
UV/Vis	0.999	42 780	n.d.	n.d.
Q1 scan	0.9996	125	2.9 %	29.4 %
MI scan	0.9999	1.5	0.7%	8.6 %
MRM scan	0.9999	0.19	0.5 %	2.5 %

Fullerene Summary

Quantification – CNTs

CNT & Graphene UV/VIS Absorbance

Absorbance

Wavelength (nm)

Standard curve for GO at different wavelengths

Indirect Measurement

- Single Particle ICP-MS (spICP-MS)
 - Track residual catalyst rather than carbon
 - Ranville et al. showed for SWCNT
 - Our group has evidence for MWCNT

ig. 1 Real-time ICP-MS response data, for determination of the best analyte netal for CNTs used in this study. The CNTs were at 1 ug L^{-1} to ensure enough INTs would be in solution for analyte comparison. Only data for one isotope each of Ni (⁶⁰Ni) and Mo (⁹⁸Mo) are shown here. Other isotopes were not as usable due

Reed et al., 2013

Thermal Optical Transmittance (Temperature Programmed Oxidation)

Sunset Laboratories Lab OC-EC Aerosol Analyzer

iniiii

X

Comparison of 15 CNTs

CNT ID	CNT Type	State	Purity ^a	Metal Content	Outer Diameter (nm)	Inner Diameter (nm)	Length (µm)
MW-O	MWCNT	Raw	>95%	<5%	20-30	5-10	10-30
MW-P	MWCNT	Purified	>98%	<2%	20-30	5-10	10-30
MW-F	MWCNT	Functionalized	>99.9%	<0.01%	20-30	5-10	10-30
MW-100	MWCNT	Raw	>95%	<5%	60-100	5-10	0.5-500
MW-30	MWCNT	Raw	>95%	<5%	10-30	5-10	0.5-500
MW-20	MWCNT	Raw	>95%	<5%	10-20	5-10	0.5-200
MW-15	MWCNT	Raw	>95%	<5%	7-15	3-6	0.5-200
MW-Arc	MWCNT ^c	Raw	<50%	0%	5-10 ^b	-	-
MW-15G	MWCNT ^d	Annealed	>97%	<1%	7-15	3-6	0.5-200
MW-Mitsui	MWCNT		>98%	<1%	20-70		
MW-OH	MWCNT	Functionalized	>95%	<1.5%	8-15	3-5	10-50
MW-COOH	MWCNT	Functionalized	>95%	<1.5%	8-15	3-5	10-50
SW	SWCNT	Raw	<50%	<10%	1.1		0.5-100
SW-65	SWCNT	Purified	<75%	<10%	0.8		0.45-2

Thermal Properties of CNTs

Oxidizing conditions (90% He/ 10% O₂)

Conclusion: Not all CNTs "burn" at the same temperature

Temperature Comparison for 50% CNT combustion

PTA method is a refinement to NIOSH Method 5040

Doudrick, K., P. Herckes, P. Westerhoff. Detection of carbon nanotubes in environmental matrices using programmed thermal analysis. *Environ. Sci. Technol.*, 46(22), 12246–12253, 2012.

Thermal Properties of CNTs related to Structural Defects

90%He/10%O

Thermocouple

H

CNTs & Other NM Detection in biomass

- Raman and imaging can detect CNTs, but not quantify them well
- Extraction protocol must:
 - Minimize oxidation of CNT
 - Remove interfering background organic carbon (from rat lung tissue)
 - Separate solid-phase CNT from liquid-phase dissolved tissue

Selective digestion can remove organic matter & facilitate CNT quantification

Can solvents remove organic matter? **CNT Recover** 80% Yes - Oxidants (H_2O_2) - Acids (HNO_3, H_2SO_4) 60% Alkali (NaOH, KOH, NH₄OH, Solvable) 40% Enzymes (TMAH, ProtK) But, do solvents affect CNT detection? 20% Mostly, yes Surface oxygenation results in 0% combustion at lower temperatures Enymes and customized alkali fair best

•

Application of Extraction Method to Rat Lungs

2.9 \pm 0.19 μ g CNTs, whole lung – 93% recovery

Doudrick, K., Corson, N., Oberdörster, G., Eder, A., Herckes, P., Westerhoff, P. Extraction of carbon nanotubes from rat lung tissue. ACS Nano (2013).

Hazard & Exposure Analyses

Figure 12. Programmed thermal analysis quantification of MWCNTs in lung tissue. (A) Day 1 and 21 time-course data from animals instilled with O-, P-, or F-MWCNTs. (B) Time-course data from animals exposed to F-MWCNTs by intratracheal instillation and inhalation.

Silva et al., ACS Nano, 2013

Similar Approach for Graphene (GO & FLG)

Step 1- Programmed Thermal Analysis (PTA)

Step 2: Improve separation of GO signal from background organics

- Add reductant (NaBH₄)
- Reduced graphene oxide (RGO) analysis by XPS yields decreases number of C-O & C=O bonds by > 5 fold
- PTA thermogram improves

Step 3: Adding Solvable[™] to degrade organics

- Solvable is an alkaline digestate that degrades organics; surfactant helps separation
- Solvable + NaBH₄ produces good pellet for separation & analysis

Final Digestion Method to Handle Separation of FLG, GO (or CNT) from High Biomass Concentrations (1 g/L)

Carbon NM Monitoring in Air Samples?

- Goal: To quantify the presence of CNTs in the presence of background air particulates
- Samples analyzed for organic carbon and CNT by PTA – which is a refinement to NIOSH Method 5040

Recovery of CNTs on air filter samples

(Conclusion: Excellent CNT recoveries indicates viability to monitor CNTs in workplace air)

Indoor air (MWCNT spiked onto filter)

Spiked CNT / ug	TOT data / ug
1	1.00±0.15
5	4.35±0.32
10	9.59±0.58
Outdoor air	
Spiked CNT / ug	TOT data / ug
Spiked CNT / ug	TOT data / ug 0.80±0.17
Spiked CNT / ug 1 5	TOT data / ug 0.80±0.17 4.48±0.36

Conclusions

- C₆₀ derivatives
 - Extraction in solvent (toluene) gives lowest detection limits using LC-MS
 - Solvent extraction from tissue and commercial products is possible
 - Extraction from urine and fluids can use solid phase extraction
- Graphene (FLG/GO) & CNTs (SW / MW)
 - Thermal methods can be non-selective unless related to known CNT or Raman analysis
 - spICP-MS emerging as potential indirect approach to quantify metal catalyst rather than carbon itself
 - Extraction from tissues aim to minimize oxygen incorporation => Alkaline conditions are better + Enzymatic digestion
- Personal monitoring devices can collect Carbon Materials and filters can readily be extracted for analysis

