Carbon Nanotube Exposure Assessments: An Evaluation of Workplace Exposures in the U.S.

Matthew Dahm, MPH NIOSH

QEEN Workshop – Arlington, VA July 7, 2015

Disclaimer: The findings and conclusions in this presentation have not been formally disseminated by the National Institute for Occupational Safety and Health and should not be construed to represent any agency determination or policy.

NIOSH Recommended Exposure Limit (REL)

- NIOSH Current Intelligence Bulletin- 2010
 - Fall 2010 for public review
 - Proposed Recommended Exposure Limit
 - 7 μg/m³ of Elemental Carbon using NMAM 5040
 - Limitations in the sampling methods
- NIOSH Current Intelligence Bulletin- 2013
 - Final version April 2013
 - Final Recommended Exposure Limit
 - 1 μg/m³ of Elemental Carbon using NMAM 5040
 - Recognize that other metrics may be relevant

Exposure Assessment 2010-2012

Objectives

- Characterize task-specific and full-shift exposures in a representative sample of U.S. CNT and CNF workplaces
- Consider several types of workforces
 - Primary manufacturers
 - Secondary manufacturers (users)
 - Composites
 - Electronics
 - Redistributors

Exposure Assessment

Filter-Based Air Sampling

- Personal Breathing Zone Samples
 - Elemental Carbon (NMAM 5040)
 - Chemical specific mass concentration
 - Size Selective Sampling
 - Respirable
 - Inhalable
 - Anthropogenic sources
 - Background Samples
 - TEM structure counts (NMAM 7402)

Facilities

Demographics

- 14 unique sites (2010-2012)
 - Producers
 - Hybrid- Producer/User
 - Secondary Manufacturer- Electronics
 - Secondary Manufacturer- Composites/Thermo-plastics

			Secondary	Secondary
	Primary	Hybrid-	Manufacturer-	Manufacturer-
	Manufacturer	Producer/User	Electronics	Composites/Plastics
# of Facilities	4	2	4	4
Average # of employees per company	13	7528	166	1180
Average # of employees exposed	10	32	17	8
Types of Material Produced/Handled	SWCNT; MWCNT	MWCNT	SWCNT	MWCNT; CNF
Max. quantities handled per day (kg)	1.5	1	0.03	2.6
Average reported CNT diameter (nm)	1; 15	50	1.3	54; 140
Average reported CNT length (μm)	500; 70	250	250	279; 100

CNT/CNF Products

- Solar cells
- Memory devices (MEMS)
- Capacitors
- Printable LED lights
- Body Armor, CNT Yarns
- Baseball bats, bikes, boats
- Drones
- Composites for space crafts and planes

Overall EC PBZ Exposures

Summary of 14 Sites

	EC					
	GM				8-hr TWA	
	Sample	n	(μg/m³)	Min.	Max.	GM (μg/m³)
All Sites	PBZ Resp.	25	0.34	0.02	2.94	0.16
Combined						
(n=14)	PBZ Inhal.	47	1.21	0.01	79.57	0.38

EC Exposures by Group/Material

Summary of 14 Sites

				8-hr TWA GM
Industry	Sample	n	GM (μ g/m ³)	(μg/m³)
Primary Manufacturer	PBZ Resp.	7	0.05	0.04
	PBZ Inhal.	11	0.19	0.11
Hybrid- Producer/User	PBZ Resp.	9	0.68	0.41
	PBZ Inhal.	9	13.39	7.93
Sacandary Manufacturer Electronics	PBZ Resp.	5	0.93	0.18
Secondary Manufacturer- Electronics	PBZ Inhal.	18	0.52	0.12
Secondary Manufacturer-	PBZ Resp.	4	0.70	0.19
Composites/Thermoplastics	PBZ Inhal.	9	5.47	0.86

				8-hr TWA GM
Material	Sample	n	GM (μ g/m ³)	(μg/m³)
SWCNT	PBZ Resp.	12	0.16	0.08
(n=5)	PBZ Inhal.	22	0.27	0.09
MWCNT	PBZ Resp.	13	0.68	0.33
(n=9)	PBZ Inhal.	25	4.58	1.32

TEM Methodology

Modified NMAM 7402

- Three 3 mm, copper TEM grids analyzed by examining appx. 50 grid openings
- CNT Structures counted
- Binning- attempt to "approximate aerodynamic (2D) size"

Single CNT	<1µm	1-2μm	2-5μm	5-10μm	>10µm
0.0	1.7	1.7	10.7	<u> 10.3</u>	15.6
1.6	0.3	0.4	0.8	0.4	0.2
3.3	0.7	8.7	19.4	9.8	3.0
2.5	3.9	5.4	8.5	7.0	13.0
0.1	0.2	0.2	5.4	11.5	0.8
0.0	0.0	0.0	1.1	0.0	0.0
1.3	1.1	2.7	7.7	6.5	5.4

Average CNT Structures Size by Bin

6 Sites (FY11 and FY12)

Overall TEM exposures and Exposures by Material

		TEM				
						8-hr
	Sample	n	GM (f/cc)	Min.	Max.	TWA GM (f/cc)
All Sites						
Combined	PBZ	51	0.008	0.0001	1.61	(0.003)
(n=14)						

		TEM			
Material	Sample	n	GM (f/cc)	8-hr TWA GM (f/cc)	
SWCNT	PBZ				
(n=5)	Inhal.	22	0.002	0.001	
MWCNT	PBZ				
(n=9)	Inhal.	23	0.023	0.007	

Exposure Assessment/Tox Challenges

Do these two structures have the same potential for toxicity?

Image from personal breathing zone samples from CNT manufacturing (Dahm et al. 2012)

Exposure Assessment/Tox Challenges

These structures both contribute to measured elemental carbon. Which is more hazardous?

Images from personal breathing zone samples from CNT manufacturing (Dahm et al. 2012; Erdely et al. 2013)

Image courtesy of Joe Fernback, NIOSH

What can we conclude? 2010-2012

- EC Mass exposures are detectable/reliable
 - Respirable samples below NIOSH REL of 1 µg/m³
 - Inhalable > 1 μg/m³, no OEL (or thoracic)
 - Health Significance for thoracic/inhalable?
- Number Conc. by TEM
 - Possible metric
 - Need more tox info. on particle sizes of interest

Cross-Sectional Epidemiologic Study

2013-2014

- Medical exams:
 - Basic physical examination
 - Spirometry and cardiovascular function
- Biological sample collection (blood, sputum)
- Collection of information on other influential factors
- Simultaneous measurement of exposure to CNT and CNF using best metrics (elemental carbon, sizespecific structure concentrations)

Exposure Assessment Additions

Bulk/Biological Sampling

- Dermal Sampling
 - Qualitative (yes/no)
 - Wrist and palm
- Sputum Analysis
 - Hyperspectral Imaging
 - Qualitative (yes/no)
- Bulk Materials Analysis
 - PAH
 - Residual Metal Content

Dry Powder Handling Scenarios

Process: Extrusion

Task: Weighing MWCNT

Volume: 1 kg

Duration of Sample: 112 min

Exposure Concentration=

 $3.19 \, \mu g/m^3$

Process: Wet Shipping

Task: Weighing MWCNT

Volume: 7.7 kg

Duration of Sample: 269 min

Exposure Concentration=

 $0.3 \, \mu g/m^3$

Process: Resin Formulation Task: Weighing CNF/MWCNT

Volume: 100-200 g

Duration of Sample: 178 min

Exposure Concentration=

 $7.54 \, \mu g/m^3$

Study Collaborators

Reference

Dahm MM, Schubauer-Berigan MK, Evans DE, Birch ME, Fernback JE, Deddens JA. Carbon Nanotube and Nanofiber Exposure Assessments: An Analysis of 14 Site Visits. *Ann. Occup. Hyg.*, 2015, doi:10.1093/annhyg/mev020

Special Thanks to:

- Marie De Perio
- Ken Sparks
- Donnie Booher

- Debbie Sammons
- Chrissy Toennis
- John Clark

Questions?

For more information contact:

Matthew Dahm mdahm@cdc.gov (513) 458-7136

Funded through
The National Institute of Environmental Health SciencesNational Toxicology Program and
The NIOSH Nanotechnology Research Center

Disclaimer: The findings and conclusions in this report are those of the authors and do not necessarily represent the views of the National Institute for Occupational Safety and Health. Mention of any company or product does not constitute endorsement by NIOSH.

