Development of a Nanoparticle Sampler for Particle Speciation Using Electron Microscopy

Quantifying Exposure to Engineered Nanomaterials (QEEN) from Manufactured Products Workshop

> Gary Casuccio RJ Lee Group, Inc. Monroeville, PA

July 7, 2015

The TPS100

Total weight	320g
Sampler Dimensions	122mm x 63mm x 38mm
Sample Cartridge Dimensions (3mm Diameter EM Grid)	46mm x 18mm x 15mm
Battery Duration (from full charge)	~8 hours
Charging Time	<3 hours
Battery Lifespan	>300 complete charge/discharge cycles
Recommended Hot Side Temperature Range	85 to 120°C
Recommended Cold Side Temperature Range	25 to 35°C
Volumetric Flow Rate	5 mL/min

Thermophoretic Collection

Advantages

• Uses EM grid as collection substrate

3 mm

- EM analysis gives size distribution, concentration, and elemental composition
- Thermophoresis is thought to be benign to particle composition/morphology

Disadvantages

- Not direct-reading secondary analysis required
- Lower collection rate may challenge very short sample times

Thermophoretic Collection

Advantages

• Uses EM grid as collection substrate

3 mm

- EM analysis gives size distribution, concentration, and elemental composition
- Thermophoresis is thought to be benign to particle composition/morphology

Disadvantages

- Not direct-reading secondary analysis required
- Lower collection rate may challenge very short sample times

Thermophoretic Collection

Advantages

• Uses EM grid as collection substrate

3 mm

- EM analysis gives size distribution, concentration, and elemental composition
- Thermophoresis is thought to be benign to particle composition/morphology

Disadvantages

- Not direct-reading secondary analysis required
- Lower collection rate may challenge very short sample times

The Need for the TPS100

- The same properties that make engineered nanoparticles useful may lead to problems for humans, animals, and the environment
 - How do we assess and manage exposures?
 - Are engineered nanoparticles hazardous?
- The need to speciate nanoparticles
 - Direct reading instrumentation (eg., CPC, OPC, SMPS) does not speciate particles

The Potential of Electron Microscopy (EM)

- EM has the capability to speciate nanoparticles
 - Potential issues associated related to sample collection, preparation and analysis of the nanoparticles
- Issues related to widespread use of EM
 - Ability to provide statistical data on nanoparticles
 - Ability to provide data in a cost effective manner

Nanoparticle Speciation Using EM

- The key to success in particle speciation is related to collection of a sample on a substrate that is well suited for EM analysis
 - An ideal sampler would collect particles directly on a EM grid (no preparation required)
 - The sample would have uniform particle loading (monolayer)
 - The sample would have a minimum number of particles in contact

Evolution of the TPS100

- NIOSH small grant (R03OH009381, 2008-2010) awarded to John Volckens (CSU)
- 1st Technical Drawing

Proof of Concept of the CSU TPS

Laboratory Testing: Good Collection Efficiency

Thayer et al., Aerosol Sci. Tech. (2011)

CSU Prototype Thermal Precipitator

The Good: It works! (*Thayer et al., AS&T 2009*) *The Bad:* Too big, too heavy for 8 hour run time *The Ugly:* Not user friendly and not practical for personal sampling

Development of a Personal TPS

- CSU partners with RJ Lee Group
- RJ Lee Group obtains funding from Pennsylvania NanoCommercialization Center
- Work begins on development of an integrated sampler
 - Dan Miller-Lionberg (CSU): mechanical engineering
 - Hank Lentz (RJLG): electrical engineering

Prototype Integrated TPS100

Redesign of the TPS100 Cartridge The Cartridge becomes the Inlet

Re-design of the TPS100 Sampling Core

Key Components of the TPS100

[a] Sample key [b]interface panel [c] status screen [d] inlet [e] pump [f] mass flow sensor [g] hot plate [h] grid holder [i] cold plate

Sampling Core

Leith et al., Aerosol Sci. Tech. (2013)

Photo of the TPS100 Sample Cartridge

Cartridge ID

Magnet

Loading of an EM grid on the Cartridge

Loading of the Cartridge in the TPS100

RJ Lee Group

Laboratory Evaluation of the TPS100

- Salt particles (phosphate-buffered saline, PBS) were generated in a chamber using a collision nebulizer and an air pressure gauge
- The simultaneous measurement of particles was conducted with the TPS100 and scanning mobility particle sizer (SMPS)
- TPS100 samples were analyzed using EM and image analysis for particle size and count
- SMPS and TPS100 results were compared for particle concentration and size

PBS Particles Collected with the TPS100

RJ Lee Group

Field Testing of the TPS100

- Internal studies at RJLG and CSU
- U.S. EPA
- NIOSH
- Oak Ridge National Laboratory
- West Virginia University
- NASA
- Other groups
 - Germany
 - Canada
 - South Korea
 - China

Diesel Fuel Combustion Experiments (Cerium Oxide) EPA Facility in RTP, NC

Cerium Particles Embedded in Soot

RJ Lee Group

EM Analysis using STEM/ImageJ (Ce-Doped Diesel Exhaust)

S-5500 30.0kV 0.0mm x100k SE

500nm

EM Analysis using STEM/ImageJ (Ce-Doped Diesel Exhaust)

Comparison of SMPS and EM ImageJ Analysis Size Distribution and Particle Concentration EPA Diesel Emissions

SMPS Particles/cc (Average)			
Test 1	Test 2		
1.42E+06	1.10E+06		

TPS correction factor developed in the PBS experiment applied

Automated Analysis of Diesel Nanoparticles with CCSEM Analysis of TPS Sample

FESEM Field Image of Soot Structures

RJ Lee Group

Automated Analysis of Diesel Nanoparticles with CCSEM Analysis of TPS Sample

RJ Lee Group

Comparison of Particle Size Distribution SMPS and TPS EPA Diesel Emissions

- SMPS
- TPS / STEM and ImageJ
- TPS / IntelliSEM CCSEM

TPS correction factor developed in the PBS experiment applied

WVU Chamber Study: TiO₂ Sample Collection

TPS ID	Sample ID	Description	Total Sample Time
V4-03	D-07	In-chamber sample	15 min.
V4-05	B-07	Out-side chamber	15 min.
V4-05	B-08	Out-side chamber	30 min.
V4-09	B-09	Out-side chamber	60 min.

Mass Concentration: 15.7 mg/m³

RJ Lee Group

Comparison of SMPS and ImageJ Analysis of the TPS Sample Size Distribution and Particle Concentration

TPS correction factor developed in the PBS experiment applied

Detect Particle Acquire Digital Image Measure Diameters

Collect EDS

<u>د ک</u>

728

400nm L.L.

300nm 📖

200nm 📖

100nm LL

300nm

200nm 📖

100nm 📖

IntelliSEM Prospector

RJ Lee Group

Comparison of CCSEM and Image Analysis Results for Sample #2 of the Initial WVU TiO₂ Study

No. of Particles		
	Image	
CCSEM	Analysis	
3495	443	

Evaluation of Particles Generated by Small Electrical Motors

- Particle emissions from electric motors used in consumer products such as a hair dryer and hand held vacuum cleaner were collected using the TPS and SMPS
- Study performed as part of a student summer project
- TPS100 samples were collected in a test chamber
- SMPS and TPS results were compared for particle concentration and size

TPS100 Testing at ORNL

Illustration of test chamber (left) and low magnification image (1,000x) showing the distribution of particles on the TEM grid.

Example of Particle Produced by Small Electric Motor

Comparison of SMPS and EM Analysis ORNL Electric Motor Testing

TPS correction factor developed in the PBS experiment applied

On-going TPS100 Activities

- Laboratories studies
 - Evaluate collection of asbestos and CNTs
 - Continue to evaluate use of CCSEM to speciate nanoparticles
 - Potential for cost effective nanoparticle EM analysis?
 - Further evaluation of the transfer function
 - Comparison of CCSEM and SMPS data
- Continuation of Field Evaluation Studies
 - Real-world field studies w/simultaneous direct reading instrumentation
 - Comparison with filter based methods
- Evaluation of ambient ultrafine particulate
 - Secondary organic aerosols (SOA)
- TPS100 Commercialization

The TPS100

