Nanocellulose : applications in food?

Bernard Cathala

French National Research Institute
INRA, Nantes, France

Nanocelluloses and food

Nanocellulose research and applications are almost exclusively dedicated to non-food applications

However, to be fully enlarge, the market of NC should be extended to all kind applications

What applications in food sector for nanocellulose?

- Already existing uses of nanocellulose in food : bacterial cellulose
- Tehchnological properties of NC : thickening, gelling and water binding agent, emulsions.
- New applications?

What are the limitations?

Nanocelluloses

1) TEMPO oxidation or enzymatic pretreatment
2) Mechanical treatment

Cellulose :

wood, cotton, alga,

Acid hydrolysis

Cellulose nanocrystals
(CNC)

Fermentation
\leftarrow molecular weight sugars, alcool,

Bacterial cellulose (BC)

Bacterial cellulose

Bacterial cellulose is a microbial polysaccharide at high purity level. Recognized as GRAS food ingredient by FDA

- Already used in commercial products : Nata de coco
- Various shapes can obtained form different carbons sources
- BC dispersions have pseudoplastic viscosity
- BC is a biodegradable, dimensionally stable thickener (stable against temperature and salt addition)
- Low-calorie and cholesterol lowering effect

For review : ShiZ et al., Food Hydro colloids 35, p 539 (2014) / Omoto and al., handbook of hydrocolloids p321, CRCEd

Nanocelluloses as food additives

BC and NFC due to the three-dimensionnal structure display thickening, gelling and water binding properties

- Theses properties can be successfully used in various food products ${ }^{1}$:
- Adding nata to meat paste has been proposed as a viable replacement for fat in Chinese-style meatballs ${ }^{2}$
- NFC addition to hamburger reduce the weight loss after frying whitout any side effect on taste. ${ }^{3}$
- NFC have a favourable effect on baked bread (softer texture and better appearance). Lower content of NFC compared to starch for similar effect. ${ }^{3}$
(1) Suspensions containing micro frillated cellulose US Patent 4,487,634 D11, 1984.
(2) Lin, K. W., \& Lin, H. Y. Quality characteristics of Chinese-style meatball containing bacterial cellulose (Nata). J ournal of Fo od Science, 69(3), Q107 Q111, 2004
(3) Innventia report 403 : Nanocellulose as an additive in foodstuff, June 2013

Nanocelluloses in food application

BC, NFC and CNC can stabilized emulsions

- Stable over long period, $\mathrm{pH} 2-10, \mathrm{~T}^{\circ}$, ..
- Low amount of NC are required due to irreversible adsorption

BC and NFC yield 3D network ${ }^{1}$

CNCbased Pickering emulsions ${ }^{2}$

(1)Suspensions containing micro frillated cellulose US Patent 4,487,634 D11, 1984. Lightweight and Strong Cellulose Materials Made from Aqueous Foams Stabilized by Nano fibrillated Cellulose, Wagberg et., Biomacromolecules, 14, 503-511, 2013
(2)New Pickering Emulsions Stabilized by Bacterial Cellulose Nano crystals (BCN). Kalashnikova, I., et al Langmuir, 27, 7471-7479, 2011; Cathala, B. et al , Patent WO20 12/017160, 2010.

Nanocelluloses new devlopment

-High internal phase emulsions : up 95\% of oil with tunable texture
Increasing the oil content

-Double emulsions

(1)Surfactant-free high internal phase emulsions stabilized by cellulose nano crystals, I.Capron and B.

Cath ala Biomacromolecules, 14 (2), pp 291-296, 2013; Capron, I., et al patent WO2013/001189

Reglementary status

In US Bacterial Cellulose has been recognized as GRAS since 1992
In EU, cellulose is accepted as food ingredient :

- microcristalline cellulose (E 460) ou cellulose derivatives (E 461-69)

What will be the status of Nanocellulose?

- BC is a microbial polysaccharide
- NFC/CNC : novel food or E 460?

Nano concerns in EU
-Declaration requirment in France since one year. Belgium, Italie, Denmark, UK and Germany are on the way. Nancellulose?

- Safety evaluation

Summary and perspectives

NC can be efficient food additives :

- Higher functionnalities with lower dose can be expected
- Mostly dimensionnaly stable (pH , ionic strenght, T°)
- Thickening, gelling, water binding properties and emulsions
stabilizing agent
- Low-calorie and cholesterol lowering effect
- Devellop research targets
- NC fabrication process to food applications
- Technological and nutritional properties evaluation
- New products
- Tacle the question of NC reglementary status in food applications

Thanks for your attention

