Engineered nanoparticles emitted from laser printers: Quantifying the health implications from nano-enabled products during consumer use

Sandra V. Pirela

P. Demokritou, V. Castranova, Y. Qian, T. Thomas

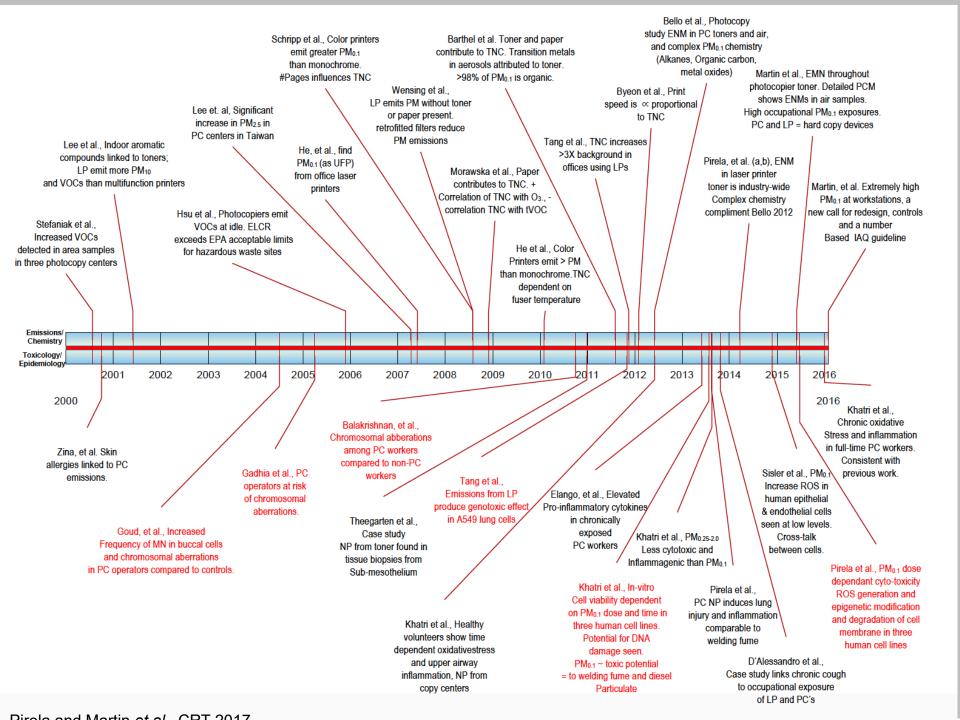
Session A | Quantifying Potential Acute and Chronic Exposure from 3D Printing/Additive Manufacturing.

QEEN II

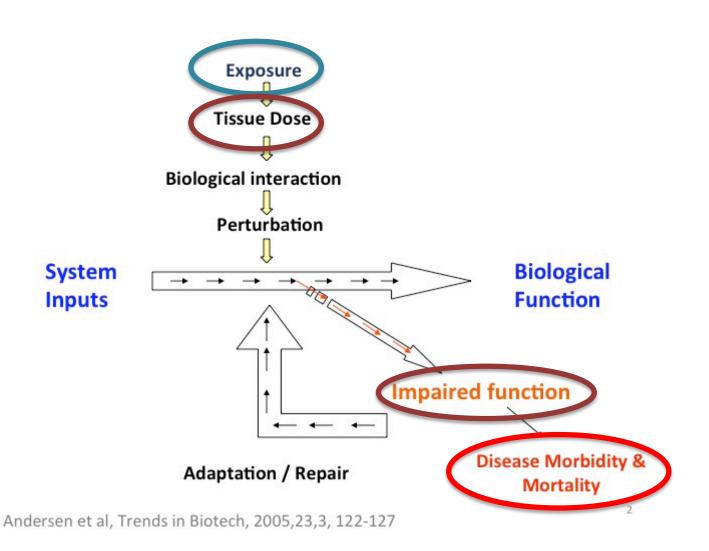
October 9th, 2018

Background: Knowledge gap

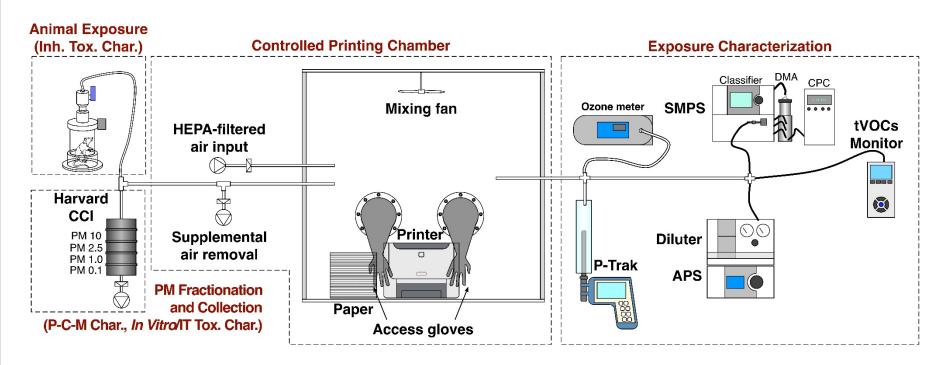
NANOTECHNOLOGY


- Superior physical, chemical and optical performance of nanoparticles in comparison to micron-sized components
- Thousands of nano-enabled products (NEPs) introduced to the market (textiles, paints, cosmetics, pharmaceutical, personal care products)

Exposure at the consumer level is inevitable


RESEARCH GAPS

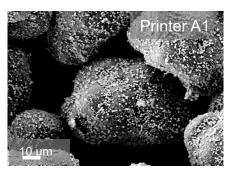
- Risk assessment requires both exposure data as well as toxicological data
 - Exposure evidence is critical to understand adverse health effects from exposures across the life cycle of NEP
- No standardized methodology for the systematic investigation of real world exposures of particulate matter released across life cycle of NEPs (LCPM)
 - No link from LCPM exposure during <u>consumer use</u> or <u>end-of-life</u> to toxicology
 - Limited exposure data beyond manufacturing stage
 - Life cycle perspective toxicology

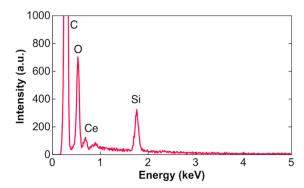

Conceptual Framework

Research Objectives

- Develop lab-based exposure platform to generate real-world PEPs
- Utilization of developed platform to evaluate PEPs and gaseous copollutants released by laser printers currently in the market
 - o Is the toner a nano-enabled product (NEP)? Physico-chemical and morphological characterization of toner powders and PEPs
 - Are ENMs emitted during a print job? Assess emission profile of laser printers (*i.e.*, PM and gaseous co-pollutants)
 - Are there operational parameters that affect the emission profile of laser printers?
- Toxicological evaluation of PEPs
 - In vitro: mono- and co-culture systems
 - In vivo: whole-body inhalation and intratracheal instillation of PEPs

Development of Printer Exposure Generation System (PEGS)

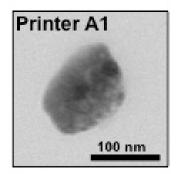


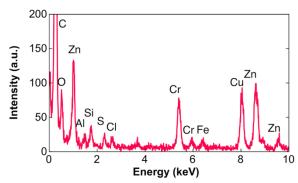

Features

- Uninterrupted operation
- Real time aerosol and gaseous emission monitoring
- Particle generation and collection
- Animal exposures
- Simulation of different exposure scenarios (ACH)
- Versatile: can be used for characterization of particle released from various NEPs

Physicochemical and morphological assessment of toner powder and PEPs

Toner powder

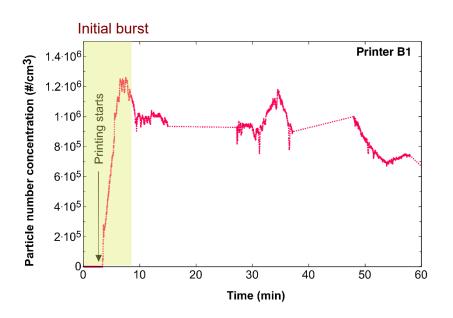


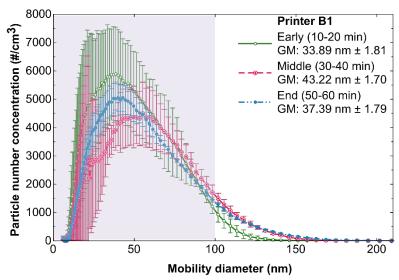


- Diameter 10-15 μm
- ENMs on the surface and embedded in the toner particle
- EDX: traces of carbon, oxygen, aluminum, silicon, cerium, iron, among others

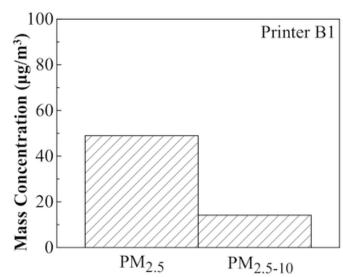
Toner formulations are nano-enabled products

PEPs

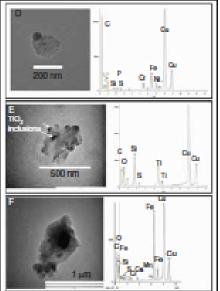


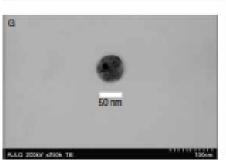


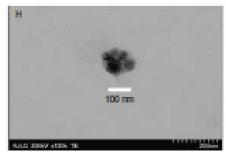
- Different aggregate shapes/sizes of ~ 20 200 nm
 - Consistent with RT monitoring data
- EDX: traces of carbon, oxygen, aluminum, silicon, zinc, iron, cerium, copper, tellerium, titanium, sulfur, among others

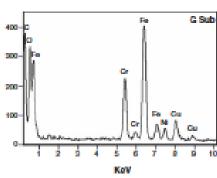

ENMs become airborne during consumer use of laser printer

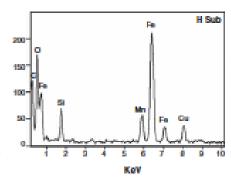
Assessment of laser printer emission profiles: Size distribution and number concentration of PEPs

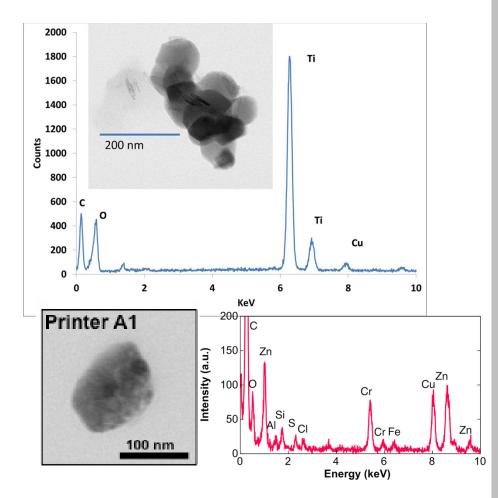


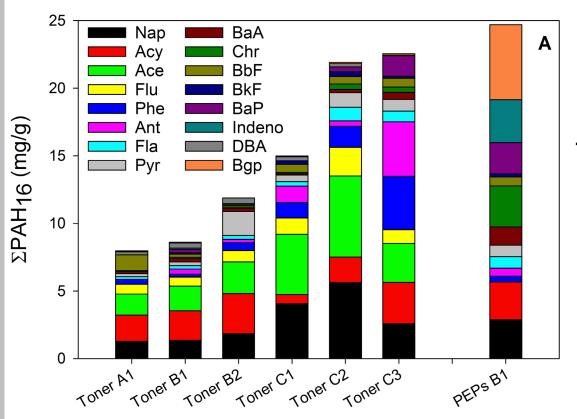



- Emission profiles of 11 laser printers (4 manufacturers)
 - No association between emission profile and brand/model
 - Peak emissions: 2,990 1.27 million particles/cm³
 - Initial burst within 10-12 min
 - Mean diameters: 39 122 nm, majority < 100 nm
 - Mass concentrations of up to 100 μg/m³
- ❖ Emission profiles identified for printers → rank them based on maximum particle released




B Co Fe Fe Co Fe Co Fe Fe Co Fe



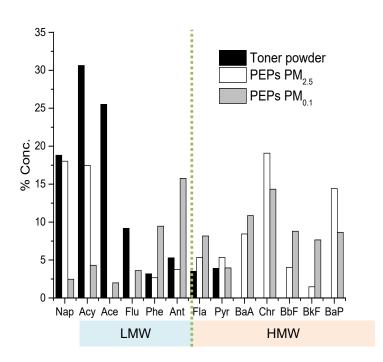


ENM in the breathing zone

Fe, Mn, Cu, Si, Cr, Ti, Al, C, Zn, Fe, Ce, Te, S, Ni, and others

Chemical speciation of PAHs in toner powder and PEPs

PEPs (B1)

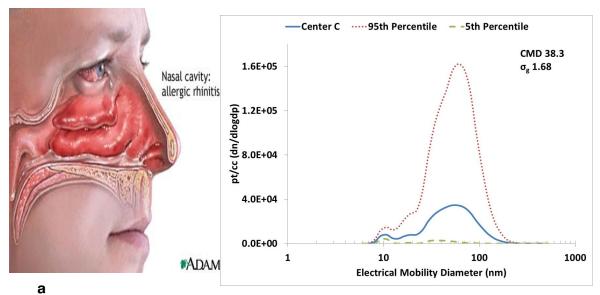

- Concentration of PAHs: 24.71 ng/mg
- Major contribution to the PAHS were high molecular weights

Toner powders (A1, B1, B2, C1, C2, C3)

- Concentration of PAHs: 22.5, 21.93, 14.99, 11.88, 8.62 and 7.97 ng/mg.
- Relatively high fraction of low molecular weight PAH compounds that made up 73-85% of the sample
- 1.86 fold increase of PAHs concentration in PEPs compared to toner (B1)

Chemical speciation of PAHs in toner powder and PEPs

Relative distribution of PAHs


❖Relative distribution of PAHs changes from low to high molecular weight PAHs from toner to high molecular weight in PEPs

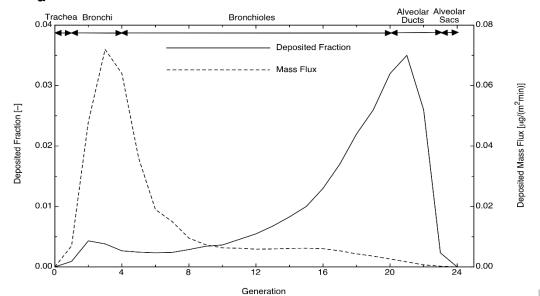
❖PEPs PM_{0.1} appears to have a higher concentration of high molecular weight PAHs than PEPs PM_{2.5}

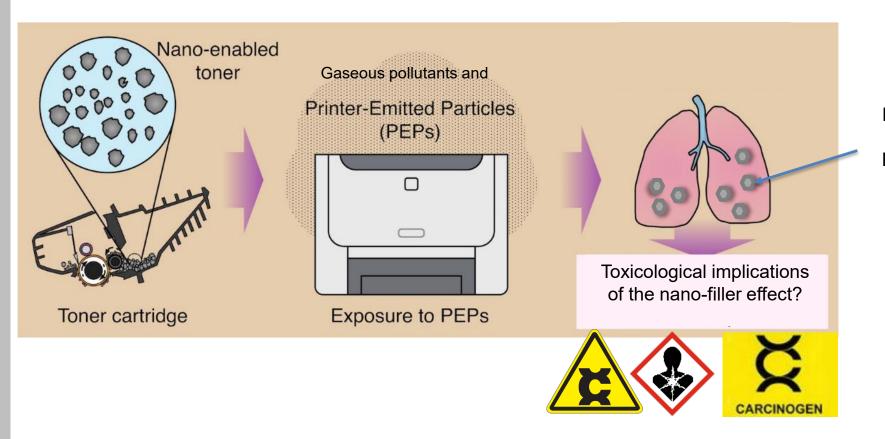
❖Higher PEF associated with high molecular weight PAHs found mainly in the PEPs rather than the toner → toxicological implications? Mean PAHs and BaP-equivalent concentrations estimated using cancer potency-equivalent factor (PEF)

		Concentration (ng/g)				
Compound	PEF	Toner powder	PEPs PM _{0.1}	PEPs PM _{2.5}		
Naphthalene	0.001	1.3	2.9	1.7		
Acenaphthylene	0.001	2.2	2.8	2.9		
Acenaphthene	0.001	1.8	0.0	1.3		
Fluorene	0.001	0.7	0.0	2.4		
Phenanthrene	0.001	0.2	0.4	6.3		
Anthracene	0.001	0.4	0.6	10.6		
Fluoranthene	0.001	0.3	0.9	5.5		
Pyrene	0.001	0.3	0.9	2.6		
Benzo[a]anthracene	0.1	0.0	1.3	7.3		
Chrysene	0.01	0.0	3.0	9.6		
Benzo[b/j]Fluoranthene	0.1	0.0	0.6	5.9		
Benzo[k]Fluoranthene	0.1	0.0	0.2	5.1		
Benzo[a]pyrene	1	0.0	2.3	5.8		
TotalPAH	s conc.	7.2	16.0	67.0		
Total PEF-equivalen	t conc.	0.0	2.6	7.8		
% PEF-equivalent/tota	l conc.	0%	16%	12%		

High Dose and Dose Rate in the Nasal Cavities

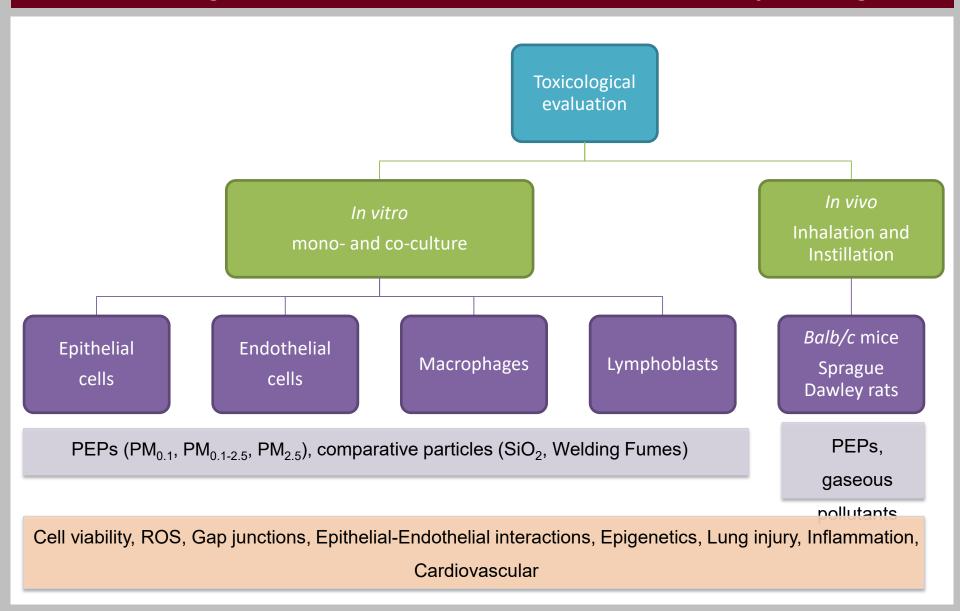
Mass Flux 0.072 μg/(m²min) Exposure time of 480 min (8 hr)


Estimated lung surface dose of 34.6 µg/m²

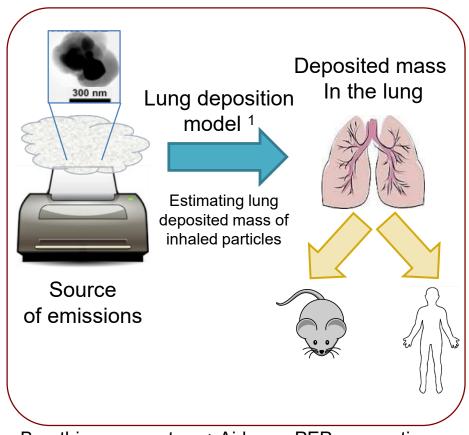

Nasal Cavity: 150 cm² Deep Lungs: 120 m²

Lungs/Nasal SA Ratio = ~8000 Deposited Fraction ~5x

Nose/Alveolar Dose (cm⁻²) ~ 2.500x

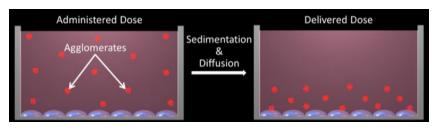


Chemical speciation of tVOCs present in toners and PEPs



PAHs + PEPs

Toxicological assessment of PEPs – Study design

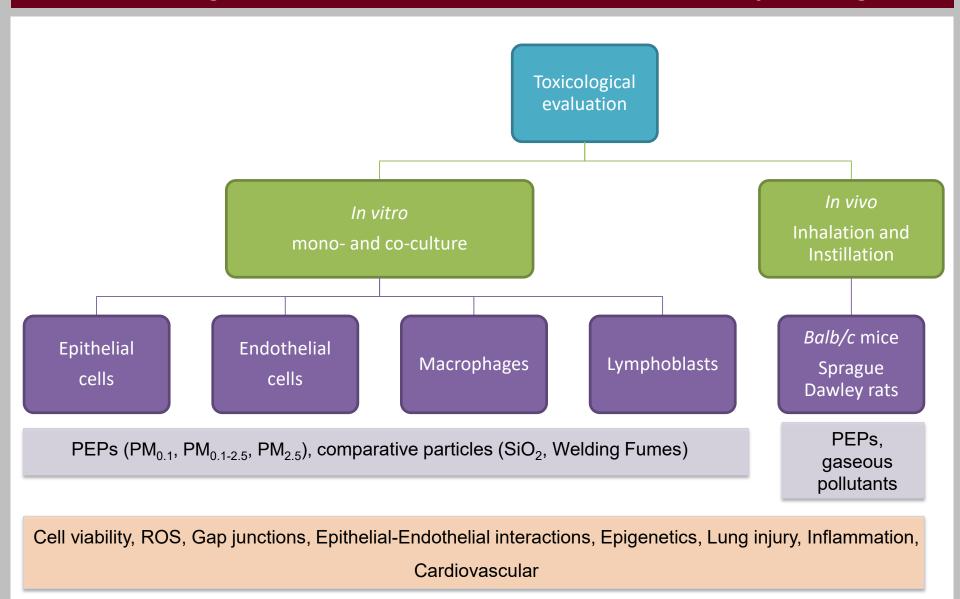

Dosimetric considerations for toxicological assessment

Breathing parameters + Airborne PEPs properties

Estimating *In vitro* Administered dose using the Harvard In vitro dosimetric platform ²⁻⁴

Summary of results from in vitro toxicological assessment

Mono-culture system


- Significant cell death in epithelial cells (at highest delivered mass) and in macrophages in a dose-dependent pattern
- Dose dependent increase in ROS production in epithelial cells and in macrophages
- PEPs affect cytokines associated with cell division and immune responses
 - o Recruitment of leukocytes to injury site, immune response stimulation, neutrophil production
- Decreased expression levels of in DNA methyltransferases (DNMTs) and TET in a dose-response pattern
 - o Possible change in methylation patterns affecting overall gene expression

Co-culture system

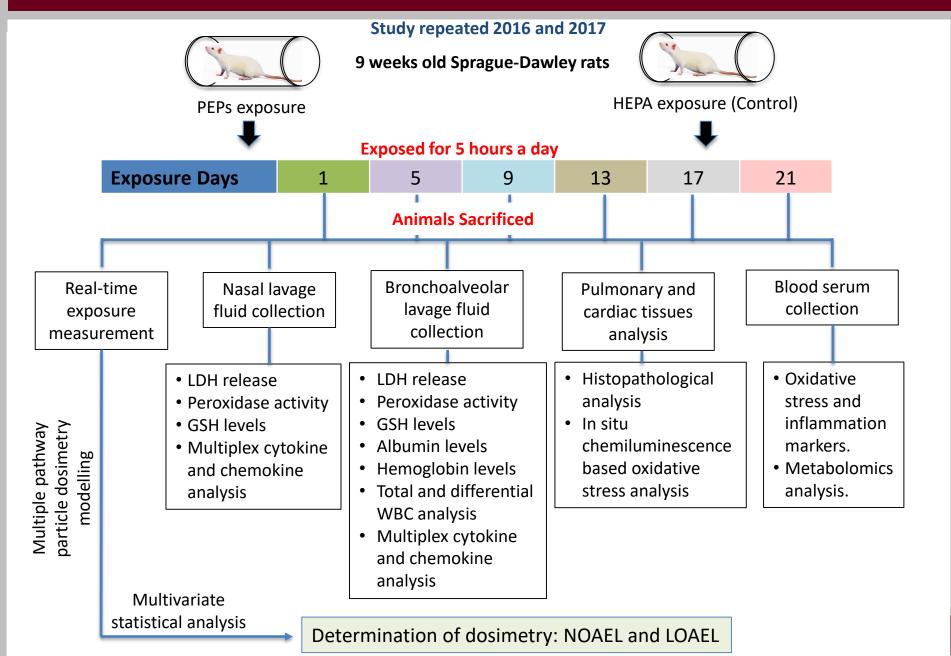
- Co-culture system allows for investigation of alveolar-capillary interaction
- Following epithelial cell treatment with PEPs, endothelial cells exhibited:
 - Increased reactive oxygen species
 - Actin filament remodeling (stress fibers, filopodia, lamellipodia)
 - Angiogenesis
 - Substantial gap formation
 - Elevated cytokines levels: IL-1β, IL-8, IP-10, FGF-basic, IL-1RA, IL-6, MCP-1, MIP-1b, RANTES

Toxicological assessment of PEPs – Study design

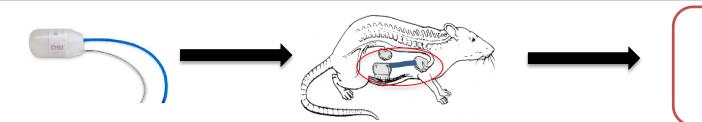
In vivo toxicological assessment: Instillation exposure

Experimental Design

- Animals: male Balb/c mice
- Exposure by intratracheal instillation
 - PM_{0.1} (sampled/extracted from CCI)
 - Control group: DI H₂O
- Doses: 0.5, 2.5 and 5.0 mg/kg bw
- Assessment done 24-hrs post exposure
- Samples collected: blood, heart, liver, spleen, lungs, bronchoalveolar lavage
- Parameters examined: lung injury and inflammation, epigenetics, oxidative damage



Summary of results from in vivo toxicological assessment


Intratracheal instillation

- No effect observed on pulmonary membrane integrity and neutrophil degranulation.
- Significant differences in white blood cell population (neutrophils, macrophages and lymphocytes) after PEPs exposure (5 mg/kg).
- Expression of a number of genes (Nos1, Ccl5 and Ucp2) involved in inflammatory and oxidative damage responses was elevated after PEPs exposure.
- Leukemia inhibitory factor (LIF) was considerably upregulated by exposure to PEPs.
- Significant loss of DNA methyltransferase Dnmt3a and an elevated expression of TE LINE-1 observed in the whole lung tissue of mice instilled with PEPs.

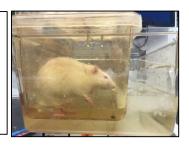
In vivo toxicological assessment: Inhalation exposure (1/2)

In vivo toxicological assessment: Inhalation exposure (2/2)

Animal assignment: HR and Contractility

PEPs (n= 4) HEPA filtered air (n= 4)

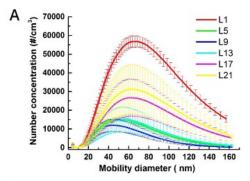
В	as	elir	ne	Exposure (21d)						Post-Exposure Days (*: cold-water stress)				Sac						
1	2	3	4	1	2 - 4	5	6 -8	9	10-12	13	14 - 16	17	18 - 20	21	23*	50,57	58*	65 , 86	91*	93

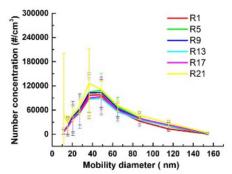

HEPA filtered air: All

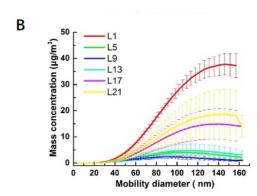
5 hrs exposure to PEPs and HEPA filtered air (Control)

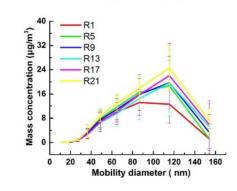
1h Monitoring

- 20 min pre
- 20 min Stress
- 20 min post

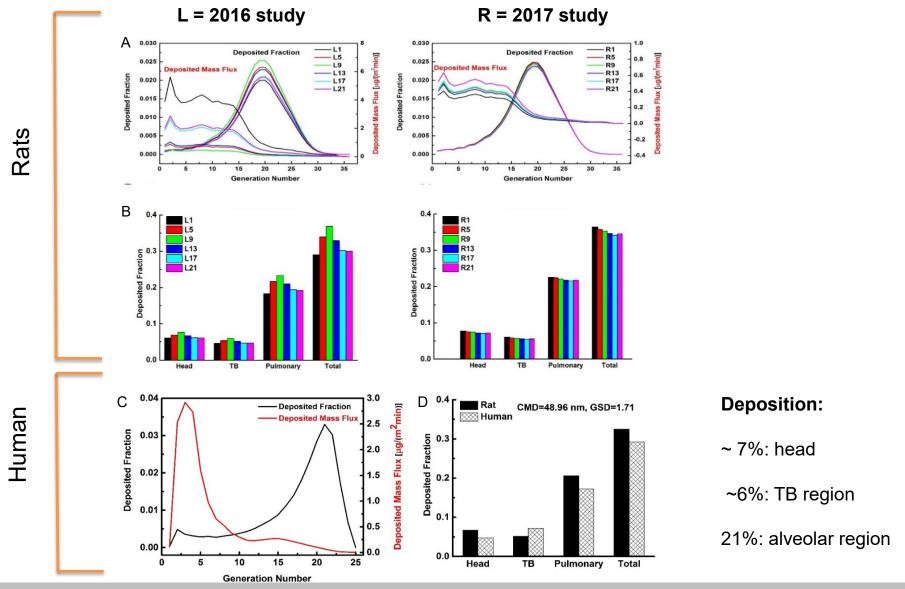

Effects of PEPs on Cardiac & Autonomic Responses to Stress


Detection of stress related metabolites in urine


Real-time exposure measurement


2016

2017



- Real-time mean particle diameter: ~45 nm
- Total particle number concentration: ~4-5 x10⁵ #/cm³
- Highest mean particle diameter: 67.62 nm
- Particle mass 737.90 μg/m³
- VOCs 364 ppb
- Variation between exposure days was detected in the 2016 study
 - This was due to use of different printers, wear and tear.

Multiple particle pathway analysis

Rats dose-response analysis relationship

Exposure day	Deposition rate (μg/hour)	Retained mass dose (μg/m²)	Biological outcomes for control versus PEPs exposed Sprague-Dawley rats (p value ≤0.05)	
L1	2.34	1.06		
R1	0.19	2.51		
R5	0.24	15.27		٦
R9	0.24	26.55		NOAEL
L5	0.43	28.2	BALF LDH ↑	LOAEL
L9	0.25	28.24		
R13	0.23	35.86		
R17	0.25	49.31	IL-18 ↓	
R21	0.30	70	BALF Hemoglobin ↑; BALF IL-2 ↑	
L13	0.50	79.31	BALF LDH ↑	
L17	1.23	252.06		
L21	1.31	322.75		

NOAEL= No adverse effect levels

LOAEL= Low adverse effects levels

0.29 m² alveolar surface area in rat

Summary of results from *in vivo* toxicological assessment (1/2)

Inhalation – Work in progress

- PEPs induced mild cytotoxicity, inflammation and oxidative stress in the respiratory region of the rats.
- Responses were in the form of modest release of pro-inflammatory cytokines and chemokines, influx of immune cells and modest increase in peroxidase activity and glutathione levels both in the NLF and BALF of the exposed animals.
- Histological and in situ ROS studies demonstrated no negative and pathological effects from PEPs exposure to both pulmonary and cardiac region of the exposed animals.
- Repeated PEPs exposure causes hypertension and sympathetic excitation.

Summary of results from in vivo toxicological assessment (2/2)

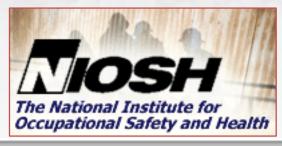
- Serum markers for oxidative stress and inflammation showed upregulation in response to PEPs exposure.
 - 8-Isoprostane and 4-HNE are well established markers of oxidative stress originating from free radical oxidation of arachidonic acid in vivo.
 - Leukotriene B4 (LTB4) is an important, well-established inflammatory mediator generated from activated innate immune cells such as neutrophils, macrophages, and mast cells.
- Extrapolating the obtained results to human exposure to PEPs for 8 hrs/day, 5 days/week, 3 weeks: NOAEL and LOAEL after pulmonary clearance were determined at 4.71 mg/m² and 7.53 mg/m².
- Based on the measured biological responses the PEPs concentration of 28.2 μg/m² was found to be the transition point from NOAEL to LOAEL.

Impact of the study

- Addressed the importance of evaluating life-cycle implications of NEPs.
- Assessing real world exposures and their associated toxicological properties rather than focusing on "raw" materials used in NEP synthesis.
- Multidisciplinary approach and methodology to investigate toxicological implications of consumer exposures to released PM from NEPs.

Major Knowledge Gaps

- Estimates of the disease burden in workers and consumers are lacking.
 - Respiratory, cardiovascular, immune system, genotoxicity
 - Carcinogenicity, neurological and reproductive toxicity
- Exposure-dose-effect relationships are needed for every endpoint.
- Exposure biomarkers for routine exposure monitoring purposes are currently lacking.
- Exact molecular mechanisms not fully elucidated.


Thank you for your attention! Questions?

Sandra V. Pirela

spirela@mail.harvard.edu

Funding Agencies

Acknowledgements

P. Demokritou

J. Godleski

A. Carll

V. Castranova

Y. Qian

T. Treye

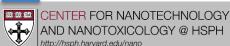
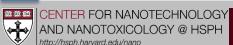

In vitro doses of PEPs and corresponding consumer inhalation exposure duration

Table 2. In vitro doses of PEPs and the corresponding consumer inhalation exposure duration.

		SAEC	THP-1			
Administered dose (cells) ^a (µg/mL)	Delivered dose (cells) ^a (µg/mL)	Corresponding consumer inhalation exposure duration to PEPs (hr) ^b	Delivered dose (cells) ^a (µg/mL)	Corresponding consumer inhalation exposure duration to PEPs (hr) ^b		
0.5	0.5	15.0	0.26	7.8		
5	5	75.2	2.6	39.0		
10	10	150.4	5.2	77.9		
20	20	300.7	10.4	155.8		
30	30	451.1	15.6	233.7		
40	40	601.4	20.8	311.5		
100	100	1503.6	52.0	778.9		

aln vitro—administered and delivered doses were based on a 24-hr in vitro exposure. bCalculations of the corresponding consumer inhalation exposure duration (hours) were based on the added values of deposition mass flux (μg/m² • min) in the various human airways, excluding head airways: the conducting zone (generations 0 to 16) and the transitional and respiratory zones (generations 17 through 23).



In vivo doses of PEPs and corresponding consumer inhalation exposure duration

Table 2Comparison of doses of murine PEP exposures used in the study by intratracheal instillation with comparable human inhalation exposures to PEPs.

PEP exposure by intratracheal instillation (mg/kg bw)	Duration of consumer inhalation exposure of PEPs (h)
0.5	13.7
2.5	70.9
5.0	141.9

