Health Effects of Foodborne Engineered Nanoparticles: Case Studies of Nanoemulsions and Titanium Dioxide Nanoparticles

Hang Xiao, D. Julian McClements

Department of Food Science, University of Massachusetts, Amherst, MA, USA

Department of Food Science

UMassAmherst Organic Nanoparticles in Foods: Origins & Applications

Lipids

- Examples: Surfactant Micelles & Lipid Droplets
- Function: Flavor, Texture, Appearance, Nutrition, Delivery

Proteins

- Examples: Casein Micelles & Protein Particles
- Function: Nutrition, Appearance, Delivery

Carbohydrates

- Examples: Nano-starch, Nano-cellulose, Nanogels
- Function: Texture, Appearance, Delivery

Inorganic Nanoparticles in Foods: Origins & Applications

Silver (Ag)

- Products: Containers, Packaging
- Function: Antimicrobial
- Iron Oxide (Fe₂O₃)
 - Products: Fortified Foods & Supplements
 - Function: Nutrition

• Titanium Dioxide (TiO₂)

- Products: Gums, Candies, Bakery Goods
- Function: Whitening

• Silicon Dioxide (SiO₂)

- Products: Salt, Sugar, Dried Milk, Dried Ingredients
- Function: Anticaking & Flow

• Zinc Oxide (ZnO)

- Products: Fortified Foods & Supplements
- Function: Nutrition

Food Nanoparticles:

Titanium Dioxide

- Origin: Chemical processing of titanium-rich ores
- Function: Lightening agents

http://nanocomposix.com/collections/titaniumdioxide-nanoparticles

Nanoemulsions

- Origin: Microfluidization
- Function: Appearance, Texture, Flavor, Delivery

Intentional versus Non-intentional

UMassAmherst Food Nanoparticles: Characteristics

Food Nanoparticles: Gastrointestinal Tract Fate

Department of Food Science

Absorption of lipophilic food components (<u>LC</u>) encapsulated in <u>nanoemulsions</u>

Formation of mixed micelles (Cryo-TEM)

Oleic Acid (C_{18:1})

Linoleic Acid (C_{18:2})

Lenolenic Acid (C_{18:3})

Control **C18:2** C18:3 **C18:1**

Department of Food Science

Nanoemulsions Enhanced Bioavailability of <u>Pterostilbene</u> in Mice

Human Feeding Study

Directed Assembly of <u>Lipid</u> <u>Nanoparticles</u> in Gastrointestinal Tract to Enhance Health Benefits of Lipophilic Food Components

Surh. YJ. NRC. 2003.

Food Design: Excipient Foods

Cooking Sauce (Cooked Vegetables)

Coatings (Raw Nuts)

Cream or Yogurt (Raw Fruit)

From: The hierarchical structure and mechanics of plant materials Lorna J. Gibson. Interface 12 (104), 2012

Salad Dressing (Raw Vegetables)

TiO₂ Nanoparticles are found in many foods

Whitening agents

TiO₂ Nanoparticles: Change in Particle Corona

Intestine

Bare Particle (pH 7) Mucin-Protein Coated-Particle (pH 7) Mucin-Protein Coated-Particle (pH 3) Bile Salt-Protein Coated-Particle (pH 7)

TiO₂ NPs: life-long exposure

