Pushing Photons: Metasurface design methods can make LED light act more like lasers

Date posted
Funding Agency
(Funded by the U.S. Department of Energy, the Office of Naval Research and the National Science Foundation)

Researchers at the University of California, Santa Barbara have described a new method that could pave the way toward more efficient and versatile light-emitting diode (LED) display and lighting technology. Light in LEDs is generated in a semiconductor material when excited electrons traveling along the semiconductor’s crystal lattice meet holes (an absence of electrons) and transition to a lower state of energy, releasing a photon along the way. Over the course of their measurements, the researchers found that a significant amount of these photons were being generated but were not making it out of the LED. The researchers designed an array of gallium nitride nanorods on a sapphire substrate, in which quantum wells of indium gallium nitride were embedded, to confine electrons and holes and thus emit light.