Nanomaterials and the Environment & Instrumentation, Metrology, and Analytical Methods

Dr. Michael T. Postek
Chief, Precision Engineering Division
Manufacturing Engineering Laboratory
National Institute of Standards and Technology
National Institute of Standards is the National Measurement Laboratory

- Precision Engineering Division has the responsibility of length measurement and traceability to the International System of Units (SI) – meter.
- Responsibility extends over 12 orders of magnitude from kilometers to nanometers

Subject matter expert comments are for measurement of length – size and dimensionality

- Infrastructural measurements
- Many of the comments can be broadly applied.

Measuring and predicting levels of exposure of nanomaterials for various species in the environment
Two previous NNI Workshops spoke directly to the instrumentation, metrology and analytical methods needed to broadly measure nanomaterials.
Earlier Workshops

• Much of the measurement infrastructure currently available for nanoparticle metrology good and getting better but, progress is only incremental in nature:
 – Optics
 – Transmission Electron Microscope
 – Scanning Probe Microscope
 – Scanning Electron Microscope

• Automated, operator-independent instrumentation adapted to nanomanufacturing must be developed and is indispensable to future manufacturing

• New, potentially revolutionary metrology and measurement tools are needed for many applications
 – Helium Ion Microscope
Over the past 20+ years, the semiconductor industry has been the main financial and technical driver for revolutionary advances in many areas of micro and nanomanufacturing systems and processes.

- Resulted in smaller, faster and less expensive devices.
 - Common to go to the computer store and obtain microprocessors with 45 nanometer and smaller technology

- We should look to that industry for a successful model for development of the needed infrastructural instrumentation for measurement of small structures – nanomaterials in the environment
The evolution of microelectronics to nanoelectronics, following Moore’s Law, has been facilitated through:

• Industrial consortia such as SEMATECH
• The Semiconductor Industry Association (SIA)
• SEMI
• International Technology Roadmap for Semiconductors (ITRS)
• NNI Workshops concluded that
 • A coordinating consortium-type organization (or organizations) could make huge strides in the development of needed instrumentation and metrology
 – Reduce duplication of effort
 – Focus resources
 • Nanotechnological commonalities of need in instrumentation, metrology and standards must be identified and a focus must be developed
 • Act as the focal point for any road mapping exercises.
• The “Bible” of the semiconductor industry has been the International Technology Roadmap for Semiconductors
The ITRS has successfully guided:
- General technology development
- Instrument manufacturers guidance to provide the needed tools with reasonable lead time.

Demanding industry that has continually pushed the capabilities to measure small structures
- Were able to do this because of the wealth of the industry

Instrument development associated with the semiconductor manufacturing industry was/is an evolutionary process
- Fueled by the defined needs of the ITRS and funded by the established semiconductor industry.

Instruments for measurement of nanomaterials especially those in the environment (nanoparticles) will likely follow a similar path
- But, the manufacturers need credible guidance in order to risk investment

Today, the emerging nanomanufacturing industry does not have sufficiently deep pockets to fund similar high risk instrument development.
- Potentially creates a significant funding gap leading to an impending technology gap.
Accuracy vs. Precision

- Most instruments can demonstrate a high degree of precision, but are they accurate?

- Size matters where nanotechnology is concerned
 - Knowing dimension with a known uncertainty is primary to understanding the function of nanomaterials
 - Measurements rely on instrument response functions – varies substantially between instruments
 - Often more complex than realized and is why different instruments give different measurements
 - Scanning electron microscope – electron beam interactions dominate

- Many of the databases currently under development are incorporating data from multiple sources.
 - Are these sources accurate in the generation of these data?
 - Nanomaterial database development relies on the quality and consistency of the data submitted.
 - In order to describe the properties of a nanomaterial, accurate measurement infrastructure is needed and adopted so that these data are valid and useful.
 - Data is being generated for:
 - Nano-risk Framework (DuPont and Environmental Defense Fund),
 - NIH NanoHealth Initiative,
 - EPA – Nanoscale Materials Stewardship Program and others

- Interlaboratory studies having well defined measurement procedures using accurate samples are critical to achieving confidence in the overall data.
Accuracy vs. Precision

- The need for accurate measurements is greater than ever because there is so little tolerance for error
 - Accuracy is telling the truth (within some measurement uncertainty)
 - If accuracy is not assured precision is telling the same lie over and over again.
- The need for clear, concise standardized assessment of shape and surface area requires much attention
 - Consistent measurement algorithms
Accuracy vs. Precision

- NIST is working with the other agencies, industry and academia to develop the needed metrology and standards. For example:
 - NIST/FDA/NCI
 - Three gold nanoparticle standards (RM 8011, RM 8012, and RM 8013)
 - (others in the pipeline)
 - NIST/NIOSH/RJ Lee Associates
 - Carbon nanotube metrology

- NIST/SEMATECH
 - Accurate scanning electron microscope calibration standards

- Accurate standards require:
 - Quantity of high-quality relevant material
 - Homogeneous material
 - Needed metrology
 - Accurate measurement instrument
 - Determine the total uncertainty of the measurement
In the real world materials do not always cooperate:

- Carbon nanotube - two words for many different possible materials
- At least 50 different CNT species have been identified
- Only half of these species are semiconducting
- Current manufacturing processes do not simply make one type of CNT
 - Inherently produce a mixture of CNT species along with 3-60%+ unwanted chemical impurities
- Early studies have found that residual catalyst and other contaminants can make the material inhomogeneous.
Modeling is Critical

• With the large amount of potential nanoparticles and the nanoparticle combinations possible, **predictive modeling** will become crucial.
 • Workshop on Cross Industry Issues for Nanomanufacturing
 • Predicting exposure limits and effects

• Model development is only as good as the input data

• Data needs to be accurate so informed decisions can be made regarding the suitability of these materials as a commercial product, a component of a commercial product, or release into the environment are made on a strong *scientific* basis and not hype.
Final Comments:

• *If a nanomaterial cannot be measured it cannot be manufactured.*
• *If a nanomaterial cannot be made safely it should not be manufactured.*
• *If a nanomaterial cannot be measured how would you even know?*
Thank you
Measuring and predicting levels of exposure of nanomaterials for various species in the environment

Contact Information:

Michael T. Postek, Ph.D.
Chief, Precision Engineering Division
National Institute of Standards and Technology
100 Bureau Drive, Stop 8210
Gaithersburg, MD 20899-8210
postek@nist.gov
Ph: 301-975-2299
Measuring and predicting levels of exposure of nanomaterials for various species in the environment

- Cross Industry Issues for Nanomanufacturing (in preparation)
Measuring and predicting levels of exposure of nanomaterials for various species in the environment
Measuring and predicting levels of exposure of nanomaterials for various species in the environment

Back up slides
Gold Nanoparticle Size
Standard RM

RM 8011 - 10 nm
RM 8012 - 30 nm
RM 8013 - 60 nm

Report of Investigation available at:
http://ts.nist.gov/measurementsservices/referencematerials/index.cfm
The NIST Manufacturing Engineering Laboratory (MEL) has been supporting nanomanufacturing through the development of programs for measurements and standards since about 1999. MEL plays a leading role in developing Standard Reference Materials (SRM), metrology and measurement instrumentation.

Semiconductor manufacturing has clearly benefitted and has demonstrated the value of this work.

RTI International Report estimates that for every $1 spent on measurement, the industry as a whole saw a $3.30 return.

Metrology is and has proven to be value added.