Economic Rationales and Metrics for an Advanced Manufacturing Sector

Gregory Tassey Economic Analysis Office National Institute of Standards and Technology

> <u>tassey@nist.gov</u> <u>http://www.nist.gov/director/planning/</u>

> > March 2012

Policy initiatives and metrics evolve from economic rationales:

- 1) Does a modern economy need an advanced manufacturing sector, including nanotechnology?
- 2) If yes, what are the economic (underinvestment) metrics and hence rationales for government support roles?
- 3) What are the policy response mechanisms for each type of underinvestment?
 - a) The nature of the underinvestment phenomenon determines the most efficient policy mechanism
 - b) The policy response determines impact assessment metrics

Causes of Underinvestment – Inaccurate Productivity Measurement

Source: Bureau of Labor Statistics

Causes of Underinvestment – Life Cycle Management

Compression of Technology Life Cycles

G. Tassey, The Technology Imperative, Edward Elgar, 2007

Common rationales for government support of advanced manufacturing R&D:

- Excessive risk (increase costs)
 - The "Valley of Death"
- Spillovers (reduce benefits)
- Long development time (reduce benefits)

"Black Box" Model of a Technology-Based Industry

Gregory Tassey, *The Technology Imperative*, 2007; and, "The Disaggregated Technology Production Function: A New Model of Corporate and University Research", *Research Policy*, 2005.

Technology-Element Model

Gregory Tassey, *The Technology Imperative*, 2007; and, "The Disaggregated Technology Production Function: A New Model of Corporate and University Research," *Research Policy*, 2005.

Application of the Technology-Element Model: Nanotechnology

Science Base

- carbon-based nanomaterials
- cellulosic nanomaterials
- magnetic nanostructures
- molecular nanoelectronic materials
- quantum dots
- optical metamaterials
- solid-state quantum-effect nanostructures
- functionalized fluorescent nanocrystals
- quantum-confined structures

Infratechnologies

- biological detection and analysis tools
- in silico modeling & simulation tools
- in-line measurement techniques to enable closed-loop process control
- sub-nanometer microscopy
- high-resolution nanoparticle detection
- thermally stable nanocatalysts for high-temperature reactions

- Product
- carbon nanotubes
- dendrimers
- hybrid nanoelectronic devices
- ultra-low-power devices
- self-powered nanowire devices
- nanoparticle fluorescent labels for cell cultures and diagnostics
- metal nanoparticles & conductive polymers for soldering/bonding
- nanoparticle sensors

Technology Platforms Process

- epitaxy
- nanoimprint lithography
- nanoparticle manufacture
- rapid curing techniques
- self-assembling & self-organizing processes
- scalable deposition method for polymerfullerene photovoltaics
- inkjet processes for printable electronics
- purification of fluids with nanomaterials
- roll-to-roll processing

Commercial **Products**

- hardened nanomaterials for machining/drilling
- flame-retardant nanocoatings
- sporting goods
- solar cells
- sunscreen/cosmetics
- targeted delivery of anticancer therapies
- biodegradable and lipid-based drug delivery systems
- self-repairing & longlife wood composites
- anti-microbial coatings for medical devices

Public Technology Goods

Mixed Technology Goods

Private Technology Goods

Causes of Underinvestment – Composition of R&D

R&D Efficiency: Overcoming the Innovation Risk Spike (Valley of Death)

Source: Gregory Tassey, "Underinvestment in Public Good Technologies", *Journal of Technology Transfer 30: 1/2* (January, 2005); and, "Modeling and Measuring the Economic Roles of Technology Infrastructure," *Economics of Innovation and New Technology* 17 (October, 2008)

Causes of Underinvestment – Composition of R&D

The "Valley of Death" is Getting Wider Trends in Short-Term vs. Long-Term US Industry R&D, 1993-2011

Gregory Tassey, "Beyond the Business Cycle: The Need for a Technology-Based Growth Strategy," NIST Economics Staff paper, December 2011. Compiled from the Industrial Research Institute's annual surveys of member companies.

Life-Cycle Market Failure: Technology Platform Development

Performance/Price Ratio

Potential R&D Cost Reductions in Biopharmaceutical Development with Improved Infratechnologies

Technology Focus Area	Expected Actual Cost per Approved Drug (millions)	Percentage Change from Baseline	Expected Present-Value Cost per Approved Drug (millions)	Percentage Change from Baseline	Development Time (months)	
<u>Baseline</u>	\$559.6	—	\$1,240.9 —		133.7	
Individual <u>Scenarios</u>						
Bioimaging	—	—	—	—	—	
Biomarkers	\$347.9	-38%	\$676.9	-45%	108.2	
Bioinformatics	\$375.0	-33%	\$746.3	-40%	116.6	
Gene expression	\$345.8	-38%	\$676.0	-45%	111.9	
Combined <u>Scenarios</u>						
Conservative	\$421.2	-25	\$869.6	-30	122.4	
Optimistic	\$289.2	-48	\$533.1	-57	98.1	

Complex Infrastructure for Efficient Transactions in High-Tech Markets

Policy Response

Managing the Entire Technology Life Cycle: Science, Technology, Innovation, Diffusion (STID) Policy Roles

Gregory Tassey, "Rationales and Mechanisms for Revitalizing U.S. Manufacturing R&D Strategies," Journal of Technology Transfer 35 (2010): 283-333.

Need a Total-Technology-Life-Cycle Growth Strategy

- Germany has a trade surplus in manufacturing, even though, compared to the United States, it has a
 - Approximately the same R&D intensity (2.82 percent vs. 2.90 percent for U.S.)
 - > 26 percent higher average hourly manufacturing labor compensation
- Reason: Germany has a more comprehensive and intensively managed STID policy
 - Coordinated government R&D programs
 - Strongly integrated R&D and manufacturing
 - Highly skilled labor force across all technology occupations
 - Optimized industry structure (support for both large firms and SMEs)
 - Highest % of manufacturing value added from R&D-intensive industries

Target #1: Enable vigorous *development and commercialization* of transformative manufacturing technologies

- Increase efficiency of technology platform development through
 - coordinated public and private research in precompetitive advanced manufacturing technology
 - Implement government-wide funding and portfolio management
- Expand R&E tax credit to lower industry's cost of R&D

IMPACT: Higher Rates of Innovation

Target #2: Promote *domestic deployment* of advanced manufacturing technologies to increase productivity and economic growth across all manufacturing industries

- Maintain competitive industry structures including opportunities for small and medium firms (SMEs)
- Provide the skilled workforce needed for deployment of new technologies
- Facilitate scale-up (capital formation) to enable rapid market penetration
- Use government procurement to leverage new market development

IMPACT: Market Share Growth

Impact Metrics for a Nanotechnology Innovation Cluster Model

Short-Term	Med	Long-Term					
 Partnership structures & strategic alliances organized 	 Supply-cha established 	 Broad industry and national economic benefits Return on investment GDP impacts National Economic Impact Multiplier Effect Benefits to Participants 					
 New research facilities and instrumentation in place 	 New-skiller produced 						
 New firm formation 	• Compressi						
 Initial research objectives met/increased stock of technical knowledge 	 New techninfratechnin Commercia New print New print Licensi 						
-5 -4 -3 -2 -2	L Ö 1	L 2	3	4	56	7	8
Year of Ir	itial Commercia	alization					