RESPONSE TO CASE STUDY

TRANSPORT AND FATE PERSPECTIVE

Mark R. Wiesner Professor Duke University Pratt School of Engineering Nicholas School of the Environment

Of course... for transport and fate, characterizing transformations is critical

Changes to nanoparticles

- Aggregation
- Chemical transformations (e.g. photo-induced)
- o Bio-transformations
- o Dissolution
- o Depositio

NP-mediated changes to environment

- Reactions with non-nano components
- Adsorption/facilitated transport
- o Oxidation/ reduction

To dissect the transport and fate issues associated with this problem, start with a life cycle perspective

- What is produced and how much?
- Who uses these materials and how?
- What are end-of useful life issues associated with "downstream" products?
- What are the potential receptors associated with each product use and disposal and what if any effects have been observed?

- Are any similar effects
 observed in areas associated
 with exposure pathways for
 specific materials?
- How do material propertieschange based on productsthey are used in?
- What are long-term (10yr +) transformations of nanomaterials?
- What are the procedures for dealing with non-nano wastes and feedstocks?

TO IDENTIFY CAUSATIVE AGENT, CONSIDER CAUSE(S) OF DEATH AND CONSIDER ORGANISMS AS LONG-TERM ACCUMULATORS

• Around the manufacturing site,

- Is death of birds, fish and shrubs indicative of known causes e.g., metal poisoning? Mutagenic/genoxic?
- Are there measurable quantities of "indicator" elements or compounds associated with nanomaterials, wastes, or feedstocks that may have bioconcentrated?

• Along the value chain

• What are observations of those using nano-feedstocks or in contact with nano-enabled products?

o In the world

• What are the other possible manufactured, incidental, and natural sources of a suspected material?

THE IMMEDIATE CHALLENGE ≠ FIND THE MANUFACTURED NANOPARTICLES

- o Identify cause
- Differentiate sources
- Scrutinize discharges
 - Are there nanoparticles in any identifiable discharges or wastes?
 - Are there contaminants associated with nanomaterials? (think THF fiasco!)
- Measure what you can (key gap!)

WHAT COULD HAVE BEEN DONE TO PREVENT THIS CATASTROPHE?

- What means are available to start-up companies to test new materials?
- What information is available to companies to aid them in identifying treatment and disposal technologies for managing associated feedstocks and wastes?
- What guidelines are available for selecting most-needed measurements in workplace, wastes, etc. (may included nonregulated material- bottom line considerations)
- Identify the novel properties of the nanomaterials that make them attractive as replacements for older materials or that enable new products and consider possible environmental impacts associated with these properties.
- How might novel properties affect transport and potential for transformation?

KEY INFORMATION TO HAVE ON NEW NANOMATERIALS

- Novel properties
- How they are made (energy, feedstocks and wastes)
- Likely persistence
- o Mobility
- Preferred phases
- Reactivity with key environmental components
 - Ability to accept/ donate electrons
 - Sorptive reactivity
 - Protein/ gene reactivity
 - Conformational changes
 - Gene expression
- Cellular interactions
- Organismal interactions
- o Ecoystem-level impacts