TiO₂ and Ag Nanoparticles in a River Environment

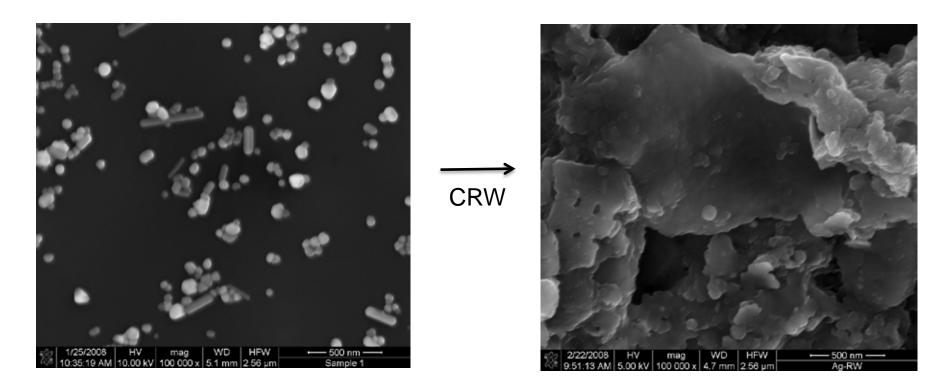
Transformation in the organism and in the environment:

What do we measure and how do we develop testing strategies to measure impacts of transformed particles in the environment

October 7, 2009

Ann Miracle, Ph.D.

Understand the transformation of nanomaterials under different environmental conditions


- Titania and Silver nanoparticles in a simulated river/sediment system
 - Columbia River water (TSS= 7 mg/L; pH=7.65; hardness=77 mg/L as CaCO₃)
 - Sand sediments

Titania and Silver citrate in static cells and flow through river mesocosms

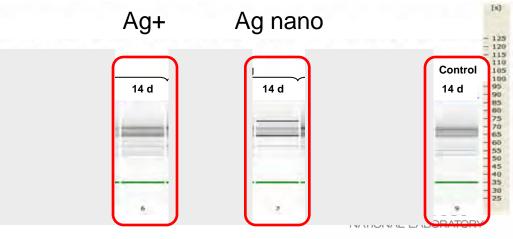
- Microbial community changes (static only)
- Uptake by clams and amphipods
- Deposition on sediments
- Aggregation in flowing water

Silver Citrate Materials

30 - 200 nm for spheres

80 – 400 nm x 30 – 50 nm for rods

Microbial Community Silver Exposures


Static Exposure Study üHomogenized sediment from surface water mesocosm üExposures (1, 4 and 14 d): Doses in CRW (detection limit 3 ng/L): 1 ug/g Ag nano 4 ug/g Ag+ •Shift in domina

Controls

5.0 4.0 Total Ag (µg/g) 125 120 Control 115 Ag lonic 110 105 Ag Nano 2.0 1.0 60 45 0.0 30. 8 10 12 14 2 25 Exposure Time (Days)

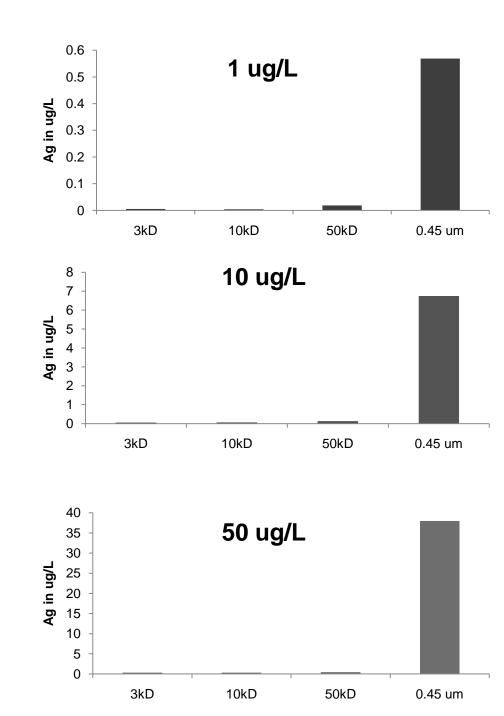
•Shift in dominant microbial species at 14 days

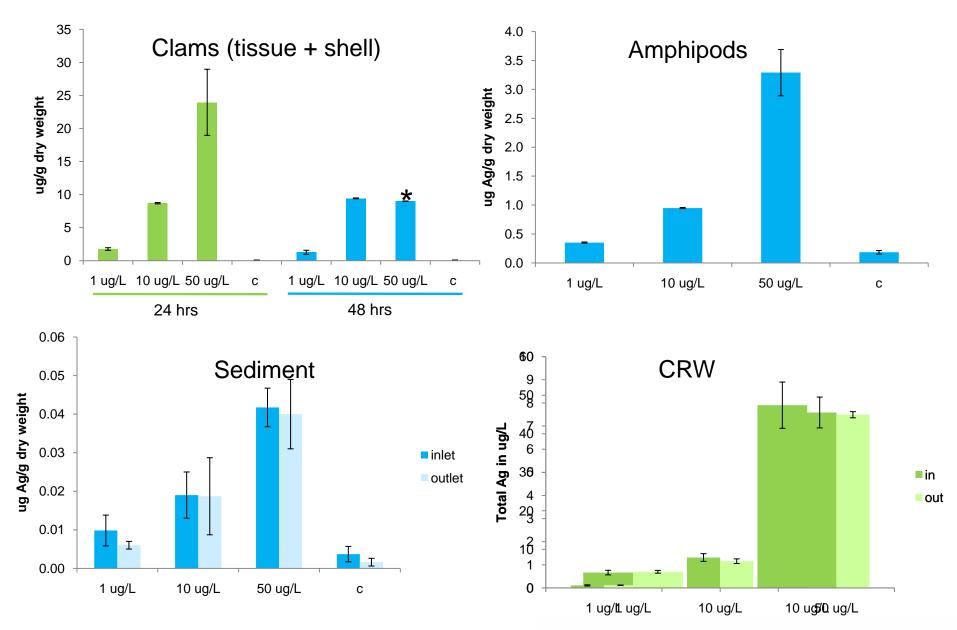
•Ag nano had greater community shift than Ag+

Silver Mesocosm Exposure

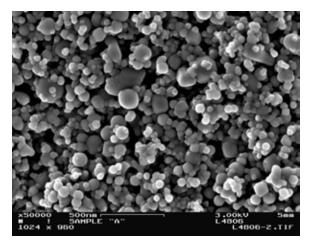
24 hr exposure, 24 hr depuration

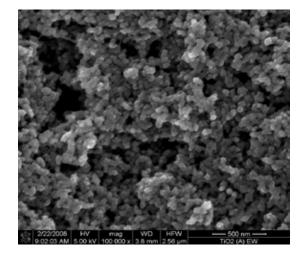
- Columbia River water (CRW)
- Clams
- Amphipods
- Microbial community in sand sediments

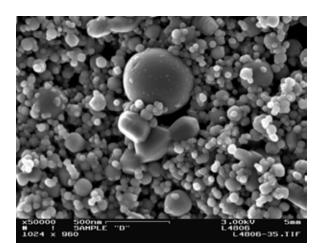

Control,1 µg/L, 10 µg/L, 50 µg/L



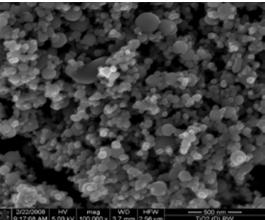
Ag particle size in CRW


- Low concentrations of dosed Ag nanoparticles fractionated to larger particle sizes
- Degree of fractionation occurs over 24 hours
- Prior studies show dissolved fractions at doses > 100 ug/L


Accumulation of Silver



Titanium Oxide Materials


5-30 nm anatase

CRW

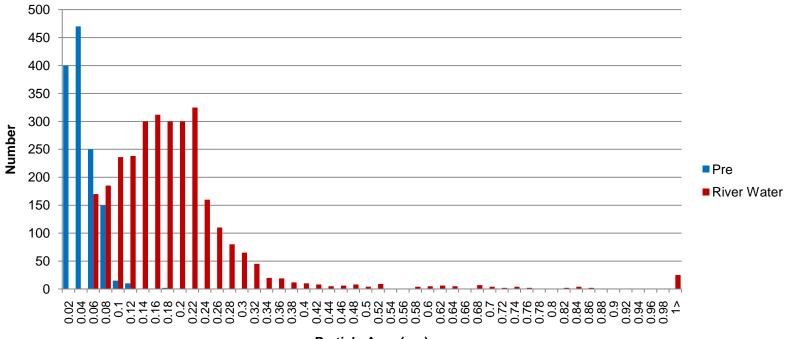
CRW

<75 nm rutile/anatase

Titania Mesocosm Exposures

-5 mg/L over 12 hour flow-through-36 hr flow-through depuration

Titania exposures



Variable	TiO ₂ (mg/g dry weight)		
	or		
	% total dose		
	<u>(5 mg/L)</u>		
	Flow - Through Static*		
	A	A/R	А
amphipods	47.9	64.8	2.1
clams	0.55	1.04	0.03
sediment	66%	13%	34%

Clam : Amphipod uptake ratio ~1:70

TiO₂ Size Distribution from SEM

Particle Area (um)

- Mean equivalent diameter*
 - Distilled Water 30 nm
 - CRW 200 nm

Two Materials – One Exposure Scenario Abiotic and Ecosystem-Wide Effects

NP size affected by environmental characteristics

- Specific properties of NP material may affect bioaccumulation and downstream ecosystem impacts
 - Silver uptake higher in clams; stays in water column
 - Titania uptake higher in amphipods; settling out greater

Acute toxicity not observed in Columbia River water

Research Gaps Remain

- NP toxicity/effect may be different in a complex environmental setting compared with single variable/static lab exposures
- Chronic (long-term) studies under complex environmental conditions need to be matched with ability to measure and characterize NPs in complex environmental samples
 - absorption, distribution, metabolism, excretion
 - recycled NPs
 - route(s) of exposure absorption, dietary

Case Study

- Seeing changes that reflect ecosystem scale disturbance
 - Birds, fish dead
 - Deformed frogs
 - Selective flora die-offs
- Relevance of materials in complex matrix
 - New paradigm vs. a standard tier-testing approach?
 - Choice of organisms for toxicity endpoints
 - Transformation of materials in complex media

Acknowledgements

In Richland, Washington:

ü Amoret Bunn

- ü Vanessa Bailey
- ü Brian Barcello
- ü Sarah Fansler
- ü Dan Gaspar
- ü Christine Jonason
- ü Danielle Saunders
- ü Cynthia Warner
- ü Marvin Warner

In Sequim, Washington:

ü Jill Brandenberger

- ü Key-Young Choe
- ü Gary Gill

In Seattle, Washington: **ü Steve Breithaupt**

