" Developing Standard Measurements to allow comparisons across experiments "

Howard Fairbrother

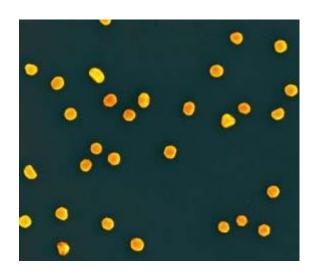
Department of Chemistry

Johns Hopkins University

NNI Workshop - Nanomaterials and the Environment & Instrumentation, Metrology, and Analytical Methods,

October 6 – 7, 2009.

What is the state of research in this area of research at the current time?


All over the place!

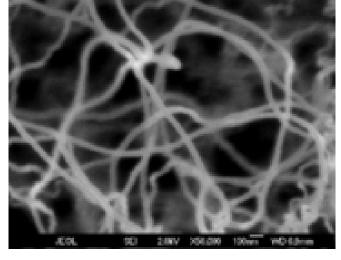
NANOTUBE -SUPPLIERS .COM


42 nanotube suppliers (Courtesy of Alex Starr)

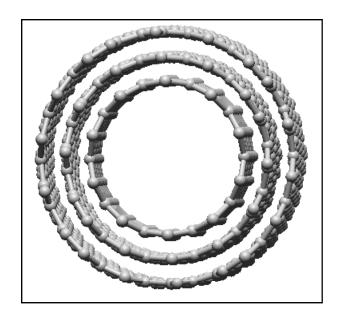
Manufacture	: Product Type	Product Method	Product Id	%C(purity)	Diameter (nm)	: Length (µm)	Cost \$/g
 NanoLab Inc	: MWCNT	CVD	: PD15L5-20 :	>95%	. 15	: 5 – 20 :	110
Mercorp	MWCNT	CVD	MRCMW	>90%	35(±10)	30	60
Helix	MWCNT	CVD	MWNT	95%	10 – 30	: 0.5 – 40 :	28
Nanocs	MWCNT	CVD	CNTM0001	High?	20	1 – 100	160
Nanocyl	: MWCNT	CVD	: NC3100 :	95%	9.5	1.5	53
SES Research	MWCNT	CVD	900-1201	95%	10 – 30	5 – 15	70
Arkema	: MWCNT	CVD	Graphistrength C100	90%		 : 0.1 – 10 :	??
Arkema	: MWCNT	CVD	Graphistrength U100	97%	10 – 15	0.1 – 10	??
Bayer	: MWCNT	CVD	baytubes C 150 P	95%	5 – 20	1 – 10	??
Bayer	MWCNT	CVD	baytubes C 150 HP	99%	5 – 20	1 – 10	??
 Helix		CVD	SD-MWNT	95%			75
Helix	MWCNT	CVD	SD-MWNT	95%	10 – 20	0.5 – 40	40
Helix	. MWCNT	CVD	MWNT	95%	10 – 30	. 0.5 – 40 :	28
Helix	: MWCNT	CVD	MWNT	95%	20 – 40	0.5 – 40	28
Helix	MWCNT	CVD	MWNT	95%	40 – 60	0.5 – 40	28
Helix	MWCNT	CVD	MWNT	95%	60 – 100	0.5 – 40	28
Carbon Solutions	: SWCNT	: Arc	: Ap-SWNT :	40-60%	1 – 10	1 – 5	50
NanoLab Inc	SWCNT	Arc	D1L1-10J	40%	1 – 1.5	10	225
Carbon Solutions	SWCNT	Arc	P2-SWNT	70-90%	4 – 5	. 0.5 – 1.5	400
SweNT	SWCNT	CoMoCat	:	90%	1	1	500
Unidym	SWCNT	HipCo	:			:	
SES Research	SWCNT	CVD	900-1351	90%	<2	1-5	250
Nanocs	SWCNT	Arc	CNTM0002		2 – 1 0	50 nm – Many	250
Helix	SWCNT	CVD	HP-SWNT	90%	1.3	0.5-40	210
Helix	SWCNT	CVD	LC-SWNT	50-70%	1.2 - 1.5	0.5-3	83
Mercorp	SWCNT	Arc	MRSW	12%	1.2 - 1.4	10-50	60
Nanocyl	: SWCNT	: CCVD	: NC1100	70%	2	: Many :	??

Development of Reference Materials is Emerging - NIST

Au NPs CNTs


But... It is probably unrealistic and unreasonable to expect that all research on EHS effects of nanomaterials (engineered or otherwise) is going to use sole source reference materials (RMs), so...

I would advocate a policy of minimum characterization requirements for studies to be suitable for publication.


These requirements would obviously depend on the nanomaterial under

consideration.

Using CNTs as an example

Showing a SEM
Image is not sufficient

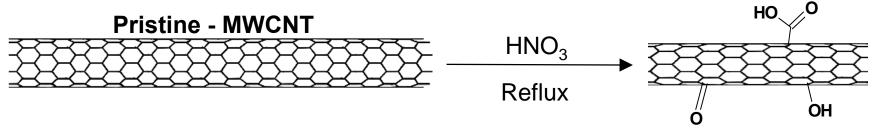
Key Materials Properties (for CNTs)

Structure - Length distribution (AFM, TEM)

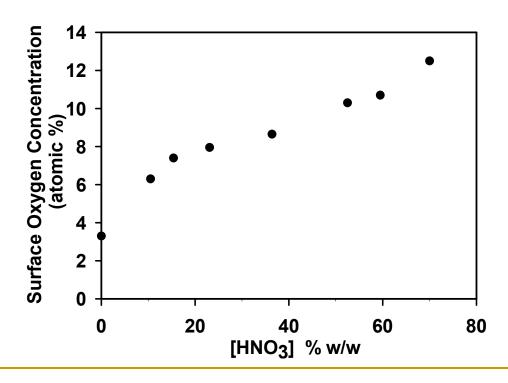
Chemical Composition (EDS, Elemental Analysis)

Purity (Raman for a:C and Elemental Analysis for

metal content)

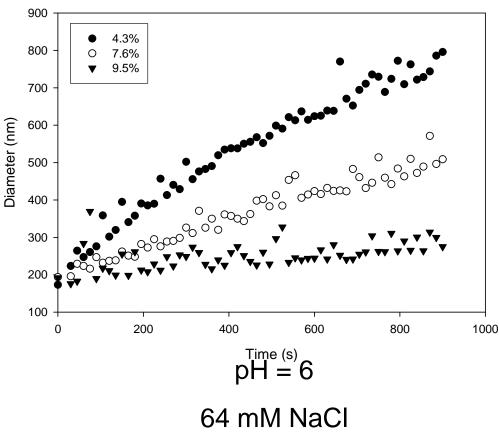

For Colloidal Suspensions:

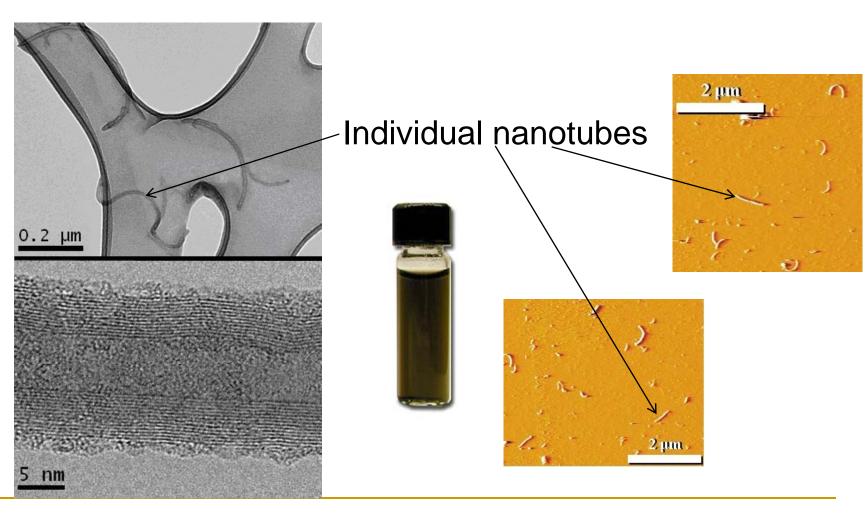
Particle Size (DLS)

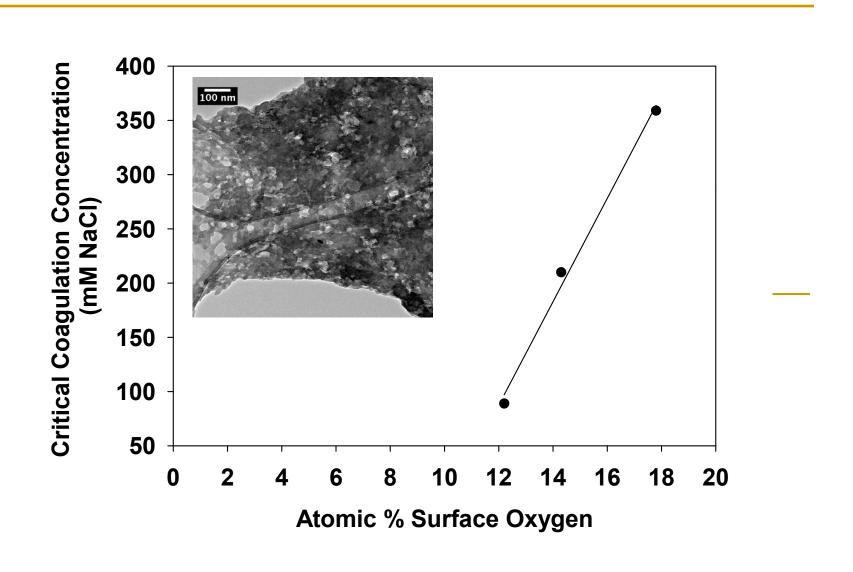

Surface Properties (EM, Chemical Composition)

Verification that you are studying what you think you are studying

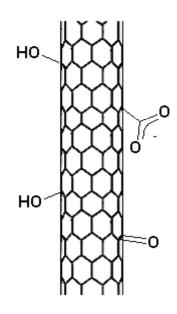
Effect of Oxidation on MWCNTs



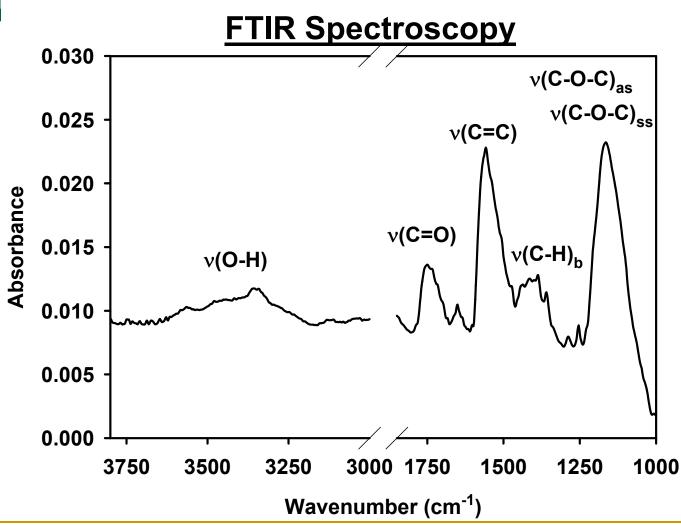

More Oxidized CNTs are more stable towards Aggregation


7.5 mg CNT/L

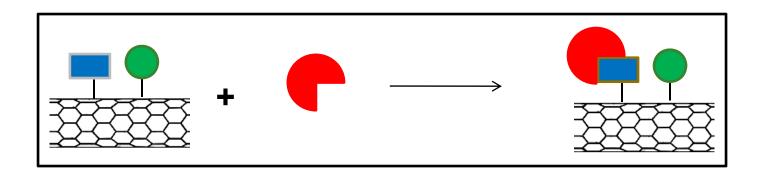
Oxidized MWCNTs in Suspension



TEM AFM


Effect of Surface Oxidation on SWCNTs

If you are going to make quantitative claims use quantitative techniques


Characterization of Oxides on

FTIR identifies oxygen functional groups but provides no quantification

Chemical Derivatization of Surface Oxides?

- Reagent selectively reacts with specific functional groups
 - Reagent contains a CF3 tag.
 - Vapor phase chemical process
 - Label chemical quantified by XPS

