Instrumentation and Metrology

Horacio Espinosa Department of Mechanical Engineering Northwestern University

Problem Definition: Manufacturing of CNTs

10s of nm

Submicron to µm

Entangled network of CNT bundles

International Institute for Nanotechnology

Nanotechnology Tools:

- Characterize Effects of NTs and NPs
- Chemical Composition with nm spatial resolution

Nanofauntain Probes

Develop a microsystem platform for mass production of nanoscale devices, sensors and structures using chemicals, biomolecules, nanoparticles, nanotubes and nanowires.

Continuous Ink Feeding

High Throughput

Studying Nanomaterial-Mediated Cancer Drug Delivery: Two Methodologies

OFITC

PLL

ND

In collaboration with Dean Ho's group

Piezoelectric AFM Scanner Joisplacement Injected Solution Transparent Substrate Fluorescence Microscope

1. Direct-Write Nanopatterning:

Cells cultured on substrates patterned with drug-coated nanoparticles (10⁻²⁴ gram dosing resolution) and their response observed

2. Single Cell In Vitro Injection: Functional nanoparticles injected directly into individual cells

[Loh, Espinosa, et al. Small, 5(14), 2009]

Direct Deposition of Drug-Conjugated Nanoparticles – *Preserved Drug Activity*

- S Doxorubicin HCI: commonly-used apoptosis-inducing chemotherapy drug
- S Tested preserved activity of the drug after nanopatterning (TUNEL assay to detect DNA fragmentation and apoptosis)

Internalization Pathways: Endocytosis

International Institute for Nanotechnology

In Vitro Direct Injection – Single Cell Studies

International Institute for Nanotechnology

Nanoscale Science & Engineering Center for Integrated Nanopatterning and Detection Technologies Northwestern University

[Loh, Espinosa, et al. Small, 5(14), 2009]

In vitro Injection: Diffusion of Diamond Nanoparticles in Cells

[Loh, Espinosa, et al. Small, 5(14), 2009]

Calculating diffusion coefficient:

Fit Gaussian at each time t_i , $\exp\left[-(r/g_i)^2\right]$

This yields a series of estimates for γ_{i} .

Linear regression yields *D*: $g_i^2 = 4Dt_i$

$D = 11.8 \times 10^{-3} \pm 0.2 \ \mu m^2 s^{-1}$ for 4 to 8-nm NDs (versus $D = 3.1 \times 10^{-3} \ \mu m^2 s^{-1}$ for 35-nm NDs, Chang *et al.* 2008)

NFP-Mediated Studies

International Institute for Nanotechnology

Chemical Composition of NWs

Local Electrode Atom Probe (LEAP)

- A technique to get atomic composition in nanomaterials with ppm resolution
- A sharp tip (<200 nm in diameter) is aligned in front of a local electrode
- S Analysis chamber is maintained at cryogenic temperatures (20-60K) at ultrahigh vacuum (~10⁻¹¹ torr)
- S A bias (~3-10 kV) is applied between the tip and the electrode to provide directionality to the evaporated atoms
- S Atoms are evaporated by exciting them with a laser of given energy (0.1 – 100 pJ) and frequency (50 kHz – 1 MHz)
- S Evaporated atoms then hit the detector and are identified based on their time of flight
- S The 3D reconstruction is done based on their position on the position-sensitive detector

Image of the entire setup from IMAGO

*Cerezo et al., Materials Today, 10, 12, 2007

International Institute for Nanotechnology

Sample Preparation and Mounting

Customized set-up for nanowires

- Sharp needle like tips with diameter less than 200 nm
- S Typical methods for specimen preparation
 - Electropolishing for metallic specimens
 - Focused-ion beam (FIB) sharpening
 - For nanowires
 - Epitaxial growth on the microposts
 - Nanomanipulation, applicable to all materials

International Institute for Nanotechnology

Laser alignment on the tip

- A laser is scanned along x and y directions
- Seak evaporation is monitored to align the laser on to the tip
- Once the peak is detected, a focus scan (in z-direction) is performed to maximize the evaporation
- Frequency of the laser determines the rate of evaporation
 - Atoms evaporate at each pulse of the laser and hit the position-sensitive detector (PSD)

Dopants in GaN nanowires

- Atomic species identified based on their time of flights
- Mass resolution is < 0.1 atomic mass units
 - Concentrations as low as 10 ppm are identified
- S Position on PSD and time of hit identifies s used to backtrack the atomic positions in the specimen for 3-dimensional reconstructions

Applicable to other materials for identifying harmful elements , for e.g. carcinogens

Questions

International Institute for Nanotechnology

