

Characterization of Surface Oxides on Carbon Nanotubes and their Influence on Environmental Properties

William P. Ball
DoGEE, JHUCollaborators:DoGEE, JHUDr. Hyun Hee Cho , Jin Yang,
Billy A. Smith*, Kevin A. Wepasnick*
Prof. D. Howard Fairbrother* (*Chemistry)Funding:National Science Foundation (CBET-0731147)
U.S. EPA - NCER (EPA-G200-STAR-R1)

Courtesy Prof. Amy Ringwood, Univ. S. Carolina

What are Carbon Nanotubes?

Rolled up graphene sheets

Materials Properties

- Mechanical Strength
- Electrical Conductivity
- Single Walled Carbon Nanotube (SWCNT)
- High Aspect Ratio

Oxidized MWCNTs in Colloidal Suspension

Stabilizing CNTs in Solution

Surface Oxidation

Oxidative Routes

- Purification
- Functionalization
- Environmental Transformation

Stability and The CCC

Stability profiles for several oxidized MWCNTs

O-MWCNT Transport as Function of NaCl Concentration (pH 7.0; oxidized with 30% HNO₃)

Research Motivation/Objectives (sorption)

- Surface Oxidation is expected to increase sorption of polar or charged contaminants.
- Better understanding is needed of the relationships between surface oxidation and metal sorption isotherms.

- 1. Determine the effects of surface oxidation on Zn(II) sorption by MWCNTs under controlled water quality conditions.
- 2. Relate changes in sorption to measured changes in the surface functional group distribution.

Naphthalene sorption with MWCNTs (Cho et al., *ES& T*, 2008)

Figure 4. (a) Freundlich *n*-values for naphthalene adsorption plotted against surface oxygen concentration for MWCNTs, natural char (NC1), and granular activated carbon (F400). (b) Maximum –adsorption capacity $(q'_{ad,max})$ for naphthalene from the Polanyi-based Dubinin-Astikov adsorption model plotted against surface oxygen concentration.

Oxidized MWCNTs in Colloidal Suspension

Thank You

Preparing & Characterizing Oxidized CNTs

TEM images of MWCNTs used in our study

Oxidized MWCNTs in Colloidal Suspension

Controlled Oxidation with

Physical Characterization: CNTs Before and After Oxidation with HNO₃:

Transmission Electron Microscopy

MWCNTs remain structurally intact

	Sorbent				
	Treatment	BET-SA (m ² /g)			
NC1	-	23.0	46.0	0.2	
GAC	-	8.0	1,004.0	1.0	
Pristine MWCNT	-	2.1	270.2	0.4	
O-MWCNT	HNO ₃ (35%)	5.9	270.3	0.6	
"	HNO ₃ (53%)	6.9	283.3	0.8	
"	HNO ₃ (70%)	9.5	255.4	0.5	
//	HNO ₃ (70%)_F ^a	4.3	261.2	0.4	
//	H_2SO_4/HNO_3-C^b	6.1	210.4	0.3	
//	H ₂ SO ₄ /HNO ₃	10.6	199.8	0.7	
" ^a F means that the M	m $/H_2SO_4/HNO_3$ - WCNTs were treated	10.8 in the furn	254.9 ace at 40	0.8 00 °C.	

^bC represents commercial samples

Initial Observations of Stability

Increasing Aquatic Stability

Colloids

But sometimes oxidation is not a perfect metric

Distribution of Hydroxyl, Carbonyl and Carboxylic Acid Groups on CNTs

Influence of Oxidizing Conditions

Influence of Oxidizing Conditions

Functional Groups

Influence of Surface Oxidation and Water Chemistry on Homogeneous Aggregation

Stability and The CCC

Stability profiles for several oxidized MWCNTs

Surface Oxidation, the CCC and pH

Total oxidation provides a good metric for colloidal stability

Measurements of materials properties can be used to predict colloidal properties

Influence of Surface Oxidation and Water Chemistry on Deposition

Studying Deposition in Porous

O-MWCNT Transport as Function of NaCl Concentration (pH 7.0; oxidized with 30% HNO₃)

O-MWCNT "Sticking Probability" as Function of NaCl (pH 7.0; oxidized with 30% HNO₃)

Influence of Surface Oxidation and Water Chemistry on Sorption Properties with Respect to HOCs and Metals

Naphthalene sorption with MWCNTs (Cho et al., *ES& T*, 2008)

Figure 4. (a) Freundlich *n*-values for naphthalene adsorption plotted against surface oxygen concentration for MWCNTs, natural char (NC1), and granular activated carbon (F400). (b) Maximum –adsorption capacity $(q'_{ad,max})$ for naphthalene from the Polanyi-based Dubinin-Astikov adsorption model plotted against surface oxygen concentration.

Sorption of Inorganic Contaminants (Metal Cations)

M²⁺_(aq) e.g.: Cd²⁺, Zn²⁺, Pb²⁺, Hg²⁺

Comparison of Zn(II) Sorption: $q_e = \frac{q_{\max} K_{\rm L} C_e}{1 + K_{\rm L} C_e}$ **Carbonaceous** Materials

250

<i>q_{max}</i> (mg/g)	SA	Oxid.	
GAC (33.1)	High	Mod.	0.30
NC1 (20.5)	Low	High	
O-MWCNT (17.6)	Mod	Mod.	U.20 0.20
	Mod		
q _{max} /SA (mg/m²)	SA	Oxid.	Δ Pristine MWCNT (2.1%
NC1 (0.42)	Low	High	$\vec{\sigma} = 0.10 + /$
O-MWCNT	Mod	Mod.	
(0.065)	-		
MWCNT (0.034)	Mod	Low	0 50 100 150 200
	-		C _a (mg/L)
GAC (0.033)	High	Mod	e v U ,

Effect of Surface Oxidation:

Zn(II) and Cd(II) sorption isotherms

Correlation of $q_{e,180}$ with Selected Surface Functional Groups:

Langmuir Two-Site Model: $r^2 = 0.98$ a. Pristine MWCNT Individual fits Ο 6 $q_{\rm e} = q_{\rm e,Graphene} + q_{\rm e,COOH}$ q_e (mg/g) 8 $=\frac{8.2 \, \text{`}\, 0.011 C_e}{1+0.011 C_e}$ $=\frac{\boldsymbol{q}_{\max,\mathbf{G}}\boldsymbol{K}_{\mathrm{L},\mathbf{G}}\boldsymbol{C}_{\mathrm{e}}}{1+\boldsymbol{K}_{\mathrm{L},\mathbf{G}}\boldsymbol{C}_{\mathrm{e}}}+\frac{\boldsymbol{q}_{\max,\mathbf{C}}\boldsymbol{K}_{\mathrm{L},\mathbf{C}}\boldsymbol{C}_{\mathrm{e}}}{1+\boldsymbol{K}_{\mathrm{L},\mathbf{C}}\boldsymbol{C}_{\mathrm{e}}}$ 4 $q_{e,COOH} = \frac{1.4 \, \circ \, 0.10 C_e}{1 + 0.10 C}$ 2 $K_{\rm L,G} = 0.008 \sim 0.010$ Experimental data Ο Langmuir two-site model 0 $K_{\rm L,C} = 0.10 \sim 0.11$ 0 50 100 150 200 C_{P} (mg/L) 16 16 **b.** m /H₂SO₄/HNO₃-C **C.** H_2SO_4/HNO_3-C $r^2 = 0.99$ $r^2 = 0.99$ 14 14 12 12 10 10 q_e (mg/g) q_e (mg/g) $q_{\rm e,graphene} = \frac{10.9' \ 0.008C}{1 + 0.008C}$ $q_{\rm e,COOH} = \frac{6.6' \ 0.10C_{e}}{0.00}$ $\frac{7.2' \ 0.11C_e}{1+0.11C}$ 8 8 6 6 4 4 $1 \pm 0.008C$ 2 2 Experimental data Experimental data Langmuir two-site model Langmuir two-site model 0 0 0 50 100 150 200 0 50 100 150 200 C_{o} (mg/L) C_{o} (mg/L)

Correlation of $q_{e,180}$ with Multiple Surface Functional Groups:

Multiple-linear regression analysis

Modeling of Cd(II) Sorption:

Two-Site Langmuir isotherm model (in single-solute system):

$$q_{e} = q_{e,Graphene} + q_{e,COOH} = \frac{q_{\max,G}K_{L,G}C_{e}}{1 + K_{L,G}C_{e}} + \frac{q_{\max,C}K_{L,C}C_{e}}{1 + K_{L,C}C_{e}}$$

 $q_{\rm e}$: adsorbed concentration at equilibrium (mmol/g)

 $C_{\rm e}$: aqueous concentration at equilibrium (mmol/L)

 $K_{L,G}$, $K_{L,C}$: adsorption affinities (L/mmol) for graphenic and carboxyl group sites

 $q_{max,G}$, $q_{max,C}$: maximum adsorption capacity (mmol/g) for graphenic and carboxyl group sites

Modeling of competitive sorption of Cd(II): Competitive Two-Site Langmuir isotherm model (in binarysolute system):

$$q_{e} = \frac{q_{\max,G} K_{L,G} C_{e,Cd}}{1 + K_{L,G,Cd} C_{e,Cd} + K_{L,G,Co-sorbate} C_{e,Co-sorbate}} + \frac{q_{\max,C} K_{L,C,Cd} C_{e,Cd}}{1 + K_{L,C,Cd} C_{e,Cd} + K_{L,C,Co-sorbate} C_{e,Co-sorbate}}$$

Parameters for Langmuir isotherm equation for observed Cd(II) with co-sorbate sorption data

Sorbent					С	d	Z	n	C	la	\mathbf{N}	lg		
	Surf ace Oxyg en (%)	Ν	q _{max,G} (mmo l/g)	q _{max,C} (mmo l/g)	K _{L,G} (L/m mol)	K _{L,C} (L/m mol)	K _{L,G} (L/m mol)	K _{L,C} (L/m mol)	K _{L,G} (L/m mol)	K _{L,C} (L/m mol)	K _{L,G} (L/m mol)	<i>K_{L,C}</i> (L/m mol)	1/na $(q_{mea}-$ $q_{mod})^2$	r ²
Pristine MWCNT	2.1	56	0.36	0.016										0.98
<u>O-MWCNT</u> (<u>H₂SO₄/HNO₃)</u>	12.3	54	0.076	0.67										0.99
<u>O-MWCNT</u> (70%-HNO ₃)	5.4	24	0.28	0.49	0.23	5.61	0.20	6.87	0.10	3.37	0.18	4.06	0.00011	0.99
<u>Activated</u> Carbon (F400)	8.0	28	0.24	0.22					-	-	-	-		0.99
Natural Char (NC1)	23.0	28	0.33	0.15					-	-	-	-		0.99

Sorption affinity for carboxyl group site ($K_{L,C}$): Zn > Cd > Mg > Ca

Competitive sorption of Cd(II):

Pristine MWCNTs

Competitive sorption of Cd(II): <u>Oxidized MWCNTs (H₂SO₄/HNO₃)</u>

Thank You

Why are Colloids "stable/unstable" - (DLVO) +Attractive_F Repulsive_F Total_F 4 3 **Kinetic Barrier** 2 1 Potential Energy Free energy 0 2 10 6 8 12 4 0 -1 -2 -3 -4 -5 -6 Interparticle Distance (nm)

Reaction coordinate

.001 M

Determining Particle Stability with Dynamic Light Scattering

•As particles aggregate their scattering properties change

DLS allows us to measure the rate of change

in the scattering properties ® aggregation rate

Kinetics with Dynamic Light Scattering

Time resolved particle size analysis

- pH = 6
- 64 mM NaCl
- 7.5 mg CNT/L

Comparison of Zn(II) Sorption: $q_e = \frac{q_{\max} K_{\rm L} C_e}{1 + K_{\rm L} C_e}$ **Carbonaceous** Materials

<i>q</i> _{max} (mg/g)	SA	Oxid.		-				
GAC (33.1)	High	Mod.	0.30 -	-	C			
NC1 (20.5)	Low	High	n²)	-				-
O-MWCNT (17.6)	Mod	Mod.	u/gm) A	-	7			
	Mod		Γ-S	/	/			NC1 (23.0%) O-MWCNT (10.3%)
q _{max} /SA (mg/m ²)	SA	Oxid.	BEJ				Á	Pristine MWCNT (2.1%)
NC1 (0.42)	Low	High	ο.10 - β	- /			0	GAC (8.0%)
O-MWCNT (0.065)	Mod	Mod.	0.00					
MWCNT (0.034)	Mod	Low	0.00 4)	50	100 C (m	150 na/L)) 200 250
GAC (0.033)	High	Mod.				- e <i>(</i>	U" /	

Sorption of Zn²⁺ onto MWCNTs

Adsorption of Zn²⁺ onto MWCNTs

Graphene sheets can adsorb metals

FTIR identifies oxygen functional groups but provides no quantification

Binding Energy (eV)

What is Chemical Derivatization?

- Reagent selectively reacts with specific functional groups
- Reagent contains a CF3 tag.
- ¡ Vapor phase chemical process
- Label chemical quantified by XPS

Chemical Derivatization XPS

Technique exploiting a reaction that selectively targets one surface functionality with a derivatizing agent, containing an easily detectable chemical tag (fluorine)

Derivatization of Hydroxyl

Labeling Reaction Schemes

Chemistry of Materials 2006, 18, 169.

Carbon **2007**, *45, 47.*