

Assessing Nanoparticle Migration from Commercial Food Contact Materials into Aqueous Food Simulants

Gregory O. Noonan¹, Susan Addo Ntim¹, Treye A. Thomas²

1. US FDA, Center for Food Safety and Applied Nutrition, College Park, MD, 20740

2. US CPSC, Office of Hazard Identification and Reduction Bethesda MD 20814

Regulatory Authority

1958 Amendment Food Drug and Cosmetic Act

- Defines "food additive".
- Requires premarket approval of new uses of food additives.

1997 Food and Drug Administration Modernization Act (FDAMA)

- Established the Notification program for Food Contact Substances (FCS).
- Establishes proprietary use of FCS to the notifier.
- Guidance documents present nonbinding recommendations on assessing the safety of FCS.

Regulated in Title 21 of the US Code of Federal Regulations (21 CFR)

Interagency Agreement FDA and CPSC/ FDA and NIST

Certain products are also regulated by the Consumer Product Safety Commission

- CFSAN Food Safety
- CPSC Safety of design and life cycle

Objectives of the Interagency Agreements

- Identify commercially available food contact materials that may contain nanomaterials.
- Quantify potential for nanomaterial migration.
- Evaluate the applicability of current migration models and testing conditions.
- Evaluate the potential for nanomaterial release under stressful use conditions

Migration from Food Contact Materials (FCM)

FCM Food

0

Safety depends on:

1) Toxicity: are migrants harmful to health?

2) Exposure: can nanoparticles migrate into foods?

- Diffusion of nanoparticles through plastics
- Partitioning of nanoparticles into food matrix
- Post diffusion processes

Migration measurements under Condition of Use

Repeat Use Room Temp.

Repeat Use High Temp.

Single Use

Product Evaluation

Product Characterization

Migration/Simulant Characterization

Polypropylene

Container 1

Plastic FCMs Evaluated

Sample	Thickness (mm)	Density (g/mL)	Nature of Polymer	Ag Conc (µg g ⁻¹)	Ag Nanoparticles
Baby Bottle 1	1.67	0.909	PP	10 -3	No
Baby Bottle 2	1.20	>1	PES	1	No
Container 2	1.05	0.900	PP	9	No
Cutting Board	2.33	0.920	LDPE	7	Yes
Container 1	1.79	0.900	PP	29	Yes
Container 3	1.75	0.904	PP	25	Yes
Food Storage Bag	63	0.942	LDPE	36	Yes

Aliquot 1

Migration Conditions

acid

Aliquot 2

Aliquot 3

Migration into 3% acetic acid – Plastic FCMs

Migration into water – Plastic FCMs

Migration Processes

DESORPTION: Weak bonding to surface

Agitation

- pH
- Surfactants / detergents · Temperature

DISSOLUTION: lons released into product

• pH

• Size and shape

Ionic strength

Concentration

Did not detect any particle migration.

Slide adapted from Andrew Whelton University of South Alabama

Migration Estimation/Theory

Physicochemical view²

Extrapolation

Polymer	Diffusion Coefficient (cm ² s ⁻¹)			
-	25 °C	4 °C		
LDPE	6.6 x 10 ⁻²³	3.2 x 10 ⁻²³		
PP	1.1 x 10 ⁻²³	1.3 x 10 ⁻²³		

Assume a nanoparticle with 5 nm radius.

2 nm sphere Connolly Volume ~ 4200 Å³ D ~ 3 x 10⁻²⁹ cm² s⁻¹

²Diffusion Coefficients: A. Simon et al. J Food Nutr. Res. 47 105-113 (2008)

¹Diffusion Data: A. Reynier et al. Food Addit. Contam.16: 137-152 (1999)

Effects of Choice of Food Simulant

Field Flow Fractionantion Data

U.S. Food and Drug Administration Protecting and Promoting Public Health

FL

Single Particle ICP-MS Data

U.S. Food and Drug Administration Protecting and Promoting Public Health

FL

Single Particle ICP-MS Data

Particle diameter - 56 nm

Particle diameter – 33 nm Ionic Ag conc – 37 ng/L

Single Particle ICP-MS Data

Time-Resolved Ultrafiltration Data

U.S. Food and Drug Administration Protecting and Promoting Public Health

Container 1

Abrasion parameters

- Speed: 60 rpm
- Force: 1000g
- # of abrasion cycles: 100

Sample – not flat – abrasion is not uniform

Conclusions

- Commercial FCMs contained low concentrations (ppm) of silver.
- Small amounts of silver detected in simulant after migration representing about 0.1% of silver in FCM.
- No particle migration detected.
- Migration profile characteristic of oxidative desorption of Ag+ from particle surface in contact with simulant.
- Choice of simulant influences particle stability.

Acknowledgements

FDA White Oak Nanotechnology Core Facility