

Simulating the fate and transport of nanomaterials in surface waters

Quantifying Exposure to Engineered Nanomaterials From Manufactured Products – Workshop Arlington, VA July 7 – 8, 2015

Chris D. Knightes, Dermont Bouchard, Xiaojun Chang, Indranil Chowdhury USEPA/ORD/NERL Athens, GA

Office of Research and Development National Exposure Research Laboratory, Ecosystems Research Division, Athens, GA 30605

- Processes of nanomaterials in surface waters
- The WASP model
- Preliminary Study
- Current Development
 - Redesign of WASP Architecture for nanomaterials

Nanomaterial Processes: Homo-aggregation

$$k_{homo-agg} = \alpha_{homo-agg} \times k_{coll}$$

$$\frac{dC}{dt} = -k_{homo-agg}C$$

Given that the environmental concentration of nanomaterials will be small, we assume homo-aggregation to be negligible

Nanomaterial Processes: Hetero-aggregation

 $k_{hetero-agg} = \alpha_{hetero-agg} \times k_{coll}$

$$\frac{dC}{dt} = -k_{hetero-agg}S$$

Each nanomaterial can associate with each particle

Nanomaterial Processes: Settling

Each particle settles at a different velocity depending on size

(Hou et al., ES&T 2015, 49, 3435-3443)

WASP Background

• Originally developed in the 1980s

(Di Toro et al., 1983; Connolly and Winfield, 1984; Ambrose, R.B. et al., 1988)

- Currently WASP version 7
- One of the most widely used water quality models in the US and the world
- WASP is a *general, flexible modeling system* that allows users to develop a model specific to their system and for their contaminants
- Simulates concentrations over time and space

Aquatic Ecosystems

- Applied to a wide range of aquatic ecosystems
 - Tampa Bay, FL
 - Lake Okeechobee, FL
 - Neuse River Estuary, NC
 - Great Lakes
 - Potomac Estuary
 - Lake Waccamaw, NC
 - Delaware River Estuary
 - Sudbury River, MA
 - Brier Creek, GA

Module	Contaminants
Heat	Temperature, Salinity, Alkalinity
Eutrophication	Dissolved Oxygen, Nitrogen (Nitrate, Ammonia), Orthophosphate, Algae
Toxicants	PAHs, PCBs, pesticides, metals
Mercury	Elemental mercury (Hg ⁰), Divalent Mercury (Hg ²⁺), Methylmercury (MeHg)

Brier Creek, Georgia

Brier Creek, GA Coastal Plain River 66 miles long

8 segment WASP model was developed for Hg TMDL and for benefits assessment of Clean Air Mercury Rule

Brier Creek, Georgia

Adapted to investigate release of MWNT and OH-MWNT into upstream segment assuming instantaneous sorption as baseline for future work.

Range of ionic strengths: 1, 5, 10, 20 mM NaCl

Four surfaces: sand, fines, POM, DOC

Distribution across media

WASP 8 Development

- Fortran 95
- Dynamic allocation, 0 to *n* of each state variable
- More state variables
 - Chemicals
 - Solids
 - DOC
 - Nanomaterials
- Nano-specific processes (e.g., hetero-aggregation)

Future Work

- Use lab and field data to parameterize nanomaterial processes in WASP
 - Simulate nanomaterial concentrations
 - Over time and length of river
 - Both in surface water and sediments
 - Distribution across media
 - DOC, silt, clay, POM, aqueous
- Model sensitivity
 - Compare K_d to $k_{het-agg}$
 - Range of α 's
- Explore different aquatic ecosystems
 - Streams, Lakes, Rivers, Ponds