Characterization Relevant to Personal Care Products

Jay Ansell, PhD, DABT July 7-8, 2015; Arlington, VA

Technical Workshop Goal

- Council isn't a research institute but topic of great interest to personal care products industry
- Characterize & Exposure have been prominent on our agenda.
- This is due both to the essential role determining exposure plays in <u>safety assessment</u> but also because of the number of regulations which now include <u>nano-specific obligations</u>.
 - Europe Regulation (EC) No 1223/2009 labeling and premarket notification
 - Health Canada Sunscreen Record Keeping
- Share my learnings

REPORTS* FOR ICCR

- Associations Survey of Nanomaterials Used in Cosmetic Products. October 2008 & June 2011
- Report of the Joint Regulator Industry Ad Hoc Working Group:
 - Currently Available Methods for Characterization of Nanomaterials; June 17, 2011
 - Characterization of Nanomaterials II Insolubility, Biopersistence and Size Measurement in Complex Media; July 2012
 - 3. Characterization of Nanomaterials III Solubility, Stability & Persistence and Size Measurement in Complex Media; May 2013
- Report of the Joint Regulator Industry Ad Hoc Working Group: Safety Approaches To Nanomaterials In Cosmetics; Nov 2013

International Cooperation on Cosmetics Regulation Initiative (ICCR)

• Voluntary group of cosmetics regulatory authorities working to remove regulatory obstacles among the regions, while maintaining the highest level of global consumer protection.

- Members:
 - Canada; European Union; Japan; United States; Brazil (2014);
 - Observers-China
- Nanomaterials on the first Agenda.

#1-2008 Nanotechnology Inventory

- ICCR invited <u>industry</u> to:
 - develop common definitions for nanotechnology in the field of cosmetics; and
 - set up an inventory of current application of nano in this field.
 - Which would be used to determine the path forward
- Industry drafted number of <u>key characteristics</u>, relevant to cosmetics, as guidance
- Shared across all Associations members
- Reported basic survey out Aug. 2008 and expanded (product & frequency of use) in Oct. 2008

"Considerations"

- Stable & Insoluble
 - Excluding labile and soluble materials toxicokinetic view present no 'exposure'
- Manufactured Intentionally
 - Excluding the universe of naturally occurring nanoscale materials ubiquitous in every day life
 - "Nanometric" form
 - Including all types of nanomaterials (particles, aggregates, agglomerates, tubes/ rods)
- Size on the order of 1 to 100 nm
 - Recognition of the value of a uniform, if arbitrary, limits accept the more commonly referenced range
 Personal Care

Questions & Concerns

- No surprising ingredients* but even with a simple inventory difficulties became evident.
- Didn't address many important questions- As example: <u>Size</u>
 - Different methods give different sizes
 - Agglomerates or aggregates
 - As Manufactured? As Sold? Final Formulation?
- Important to emphasis being listed wasn't in any way an implicit or explicit make conclusion on safety.
 - <u>This is not</u> a Risk Assessment
 - No Hazard Identification/ No Exposure Analysis

2009 Joint Regulator- Industry JRC Workshop

- Following discussions at ICCR-2, European Joint Research Center with DG Enterprise organized *International Workshop on Regulatory Issues Regarding the Use of Nanotechnology in Cosmetics*, July 2009, at JRC in Ispra, Italy
 - Share current approaches & knowledge on nanomaterials in cosmetics, and to more thoroughly explore the challenges of regulating them.
- 28 experts from Gov'n & Industry: EC JRC, DG ENTR, R&I members from the 4 ICCR jurisdictions, the EU SCCS, the Nanotechnology Industry Association
- Following presentations of the state of science 2 break-out sessions
 - Definitions Identification, Detection and Characterization
 - Regulatory Safety Testing.

Definitions Outcome

- Recognized that a complete <u>characterization for scientific purposes</u>, (hazard identification and risk assessment) is far more detailed than that needed within a regulatory framework.
- Agreed that <u>for regulatory purposes</u> simpler criteria, like those advanced within the ICCR framework would be sufficient.
- Characterization should be done on finished formulations but analysis <u>methodology was probably not up to the task</u>. Therefore rely on simplified models or on a raw materials basis.
- **Even so** additional work would be needed to fully <u>clarify terminology</u> like stable, insoluble, or 1 to 100 nanometers.

2010 Criteria and Methods of Detection

- Building on Ispra new work items proposed.
- Many organization active in area but ICCR, with its narrower focus on cosmetics, is in a strong position to establish criteria, that while consistent with international definitions is most relevant to cosmetics
- Joint Regulator- Industry Working Group established to recommend criteria determining if a material is considered "nanomaterial" within the 4 regions.

An <u>insoluble</u> ingredient, <u>intentionally manufactured</u>, with one or more dimensions in the <u>realm of 1 to 100 nanometers</u> in the <u>final formulation</u> and is <u>sufficiently stable and persistent</u> in biological media to allow for the <u>potential of interaction with biological systems</u>.

Analytical Methods

- Methods 21 well developed, robust identified
 - 9 Spectroscopy; 3 Chromatography; 3 Microscopy & 6 Other Physical
- Parameters
 - Particles; Size & Distribution; Agglomeration/ Aggregation; Shape; Stability
 - Surface; Area, Chemistry, Charge
 - Chemical Composition

Most Relevant Methods by Parameter

		1							Chromato-													
			Spectro scopy						graphy Microscopy					Physical								
		AAS	DLS	LDE	ICP-MS	PALS	SAXS	XPS	XRD	XRF	CHDF	FFF	GE	SEM	SPM	тем	AUC	BET	CPS	w	SMPS	
_	Size & Distribution		Х				Х				Х	Х		Х		Х	х		Х	Х	X	Х
Partic le			-		1														1	1	-	-
	Agglomerate/ Aggregation		Х				х							х	Х	Х				Х	Х	х
	-			_								-										_
	Snape						Х							x	X	х						
	Stability		х																			Г
									•													-
																	<u>+</u>					
Surface	Area																	Х				
																	<u> </u>					
	Chemistry							Х							Х							
	Charge			v		v							v		v		-					T
	Gildige			^		^							^	-	^							1
																	+					
cal	Composition	х			х			х	х	х												Г
Ε																						-
he																						
0																						

J. Ansell, D. Araki, et. al., "Report For International Cooperation On Cosmetic Regulation: Report of the Joint Regulator -Industry Ad Hoc Working Group: Currently Available Methods for Characterization of Nanomaterials, (2011) http://www.iccrnet.org/files/9514/0475/4277/2011-06 Characterization Approaches to Nanomaterials in Cosmetics.pdf

Comparison Nano within a Regulatory Framework

EU Cosmetics Regulation	European Commission Recommendation 2011/696/EU	FDA
"nanomaterial" means an <u>insoluble or biopersistant</u> and <u>intentionally manufactured</u> material with one or more external dimensions, or an internal structure, <u>on the scale</u> <u>from 1 to 100 nm.</u>	"Nanomaterial" means a <u>natural</u> , <u>incidental</u> or manufactured material containing particles, in an unbound state or as an aggregate or as an agglomerate and where, for <u>50 % or more of</u> <u>the particles</u> in the <u>number size</u> distribution, one or more external dimensions is in the size range 1 nm - 100 nm.	Whether an <u>engineered material</u> or end product has at least one dimension in the nanoscale range (approximately 1 nm to 100 nm); <u>or</u> exhibits properties or phenomena, including physical or chemical properties or biological effects, that are <u>attributable to its</u> <u>dimension(s)</u> , even if these dimensions fall outside the nanoscale range, <u>up to one</u> <u>micrometer.</u>

Critical Safety Parameters?

- ILSI NanoCharacter Workshop Jan 2013
- Identified 28 separate lists (Govern; OECD; ECETOC; Individuals; Research Consortia)
 - 60 separate properties
 - Differencing terminology & by discipline
 - Inconsistent; cannot be measures in vivo;
 Qualitative some not even be assigned units.

Summary: Nanomaterials Characterization

- A number of well recognize methods are currently available to determine these parameters
- Various methods <u>may have been used</u> but may yield different results because they do not measure the same quantity
 - Size primary particle, aggregated; agglomerate; hydrodynamic or aerodynamic
- <u>No single method</u> can, in and of itself, fully characterize
- Majority of methods require <u>significant manipulation</u> making properties under exposure conditions difficult to predict.
- Complicate in that none are 'wrong'; <u>they are ALL RIGHT</u>

JRC Practical Challenges

- Regulation to Practice Challenges
 - Measuring size of the constituent particle inside aggregates, agglomerates regardless of strength they are bound
 - Convert experimental measurements to number average distributions of polydisperse materials
 - Detect and count at sizes <10nm
- Currently usually not possible to determine primary particle <u>unless</u> <u>the aggregates themselves meet the definition</u>.
- Can only be used to <u>show a material is a nanomaterial</u>, NOT to show a material isn't.

AND THIS IS FOR PRISTINE SAMPLES

Challenges: Formulated Products

- Currently there is no method available to detect and characterize a nanomaterial directly complex environment.
- Simple act to isolate, observe, and quantify may change their physicochemical properties, making analysis extremely susceptible to artifacts.
 - The separation and/or extraction process itself can change the nanomaterial (aggregation, de-aggregation, etc.)
 - There is a lack of SOPs for sample preparation, and therefore reproducibility
 - Natural and engineered nanoparticles make it necessary to monitor of engineered nanoparticles within a huge background of unintentionally manufactured or natural nanoparticles.

Personal Care

JRC Take Aways

- Summarizing the current technical limitations , none of the currently available methods can determine for all kinds of potential nanomaterials whether they fulfill the definition or not.
- The determination of <u>whether a product</u> contains a nanomaterial, and eventually the quantity of the nanomaterials, is significantly more complex than just deciding whether a material fulfils the definition.

In Summary

- Many methods require significant sample preparation and so may have little bearing on the nanostructure as used.
- Must avoid having scientifically precise reports wholly divorced from the conditions relevant to exposure.
- A material that may be nanostructured may be considered a nanomaterial based on one set of definitions, but, in fact, have no nanoparticles under actual conditions of use.
- Great care in reporting and interpretation of results to avoid confusion with characterization for regulatory purposes and assessing the safety of nanomaterials.

