Bridging Technologies

Paul V. Braun

pbraun@illinois.edu http://braungroup.beckman.illinois.edu

Department of Materials Science and Engineering, Frederick Seitz Materials Research Laboratory, and Beckman Institute

University of Illinois at Urbana-Champaign, Urbana, IL

June 2013

"new form factors of matter lead to new functions"

Google: "Nanotechnology" images (June 7, 2012 – June 7, 2013)

Going Beyond 2D

"It's hard to get excited about 2-D"

2D nanotechnology is virtually everywhere, and of critical importance. But high-value nanotechnology needs to expand its impact beyond microelectronics, thin films, and medicine.

Necessary to Bridge Technologies from nano to macro to make nanotechnology <u>the</u> value added component.

Examples of Macroscopic Nanotechnology

- Carbon Black
 - world production ~10,000,000 tons
 - Tires are ~50 wt% carbon black
 - Volume production since ~1900
- Fumed Silica and Silica Fume
 - used in cement and as polymer reinforcement
 - Volume production since ~1950
- Clay
 - used for 15,000 years
- Alloys
 - many metal alloys are nanostructured
- Polishing media
 - from low tech to high tech
- Pigments
 - e.g. for paints and coatings
 - many variations, often nanostructured
- Energy Storage

Most are commodities. Price only slightly greater than raw materials cost + energy input cost.

Existed long before "nanotechnology". Term "nano-technology" first used in 1974 by Taniguchi.

Translating Nanotechnology into Macroscopic Systems

May require some level of "bottom-up" (but not necessary exclusively so)

- Needs to be much more than just building blocks
 - add value through functionality
 - add value through substantive and broad IP (hard for building blocks)
- Must provide a paradigm change. Otherwise the steady rate of progress of established products will surpass the functions of the "nanotechnology"

Structural Complexity

Interference lithography provides 3D structures in a single step

Campbell, et al. *Nature* **2000** Yang, Wiltzius, et al. *Chem. Mater.* **2002**

Heat Transfer

Ultralow thermal conductivity in self-assembled 3D structures

Rechargable Batteries

Ultrahigh power density through electrode nanostructuring

Zhang, Yu, Braun Nature Nanotech. 2011

Losego, Braun, et al. Nano Letters 2013

Multibeam Holography: Macroscopic Nanostructuring

Multibeam Interference Patterning of Materials

Chen, Braun, et al. APL 2007

Polymer Photoresist (SU-8)

3D Photonic Crystal-Based LED

Required merging a common 2D semiconductor growth with a 3D self-assembled template

Nelson, Braun, et al. Nature Materials 2011

Limits to Thermal Conductivity (in solids)

How does nanotechnology relate to thermal conductivity?

Temperature (K)

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Ultra-low Thermal Conductivity: Towards Macroscopic Systems

2.0 1.8

1.6

Interface Density (nm⁻¹)

1.2

1.0

INIVERSITY OF ILLINOIS AT LIBBANA-CHAMPAIG

1.4

Layered Clays

- ~1 interface/nm
- Self-assemble into layered structures
- Produced worldwide in high volume

Losego, Braun, et al. Nano Letters 2013

Batteries (always "Bulk" materials)

Inside a Li-ion Battery

Continuous ion and electron transport pathways in electrodes critical Provided by pore network and conductive additives

Venkat Srinivasan, LLNL http://berc.lbl.gov/venkat/files/batteries-for-vehicles.pdf

- 1. New Materials
- 2. Structure Design
- 3D electrode architecture
- Large surface area

plates

Thin film of active materials

Chemical Society Rev. 2009, 38, 226

Zhang, Yu, Braun Nature Nanotech. 2011

Anode

Cathode

Wrap a surface into a 3D structure maximizing kinetics and capacity

Zhang, Braun Nature Nanotechnology, 2011

3-D Metal Foams – The Electrode Support

S

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

X. Yu, Braun, et al. Advanced Materials (2007)

lower filling fraction (FF)

Bicontinuous Battery Electrode (Cathode)

NiMH (NiOOH) Li-ion (LiMnO₂) a 100nm 600 **Metal Framework** b e 100nm 600nm C **Coated Framework** 100nm ΙS UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Ultrafast Discharge Characteristics (high power)

Nickel Metal-Hydride Cathode

75% capacity retention at 1000C discharge!

(1C is the current required to fully discharge the battery in 1 hour, 1000C is the current required for a full discharge in ~3.6 sec.)

Lithium-ion Cathode

Significant capacity retention at 371C (complete discharge in ~10 sec.)

IVERSITY OF ILLINOIS AT URBANA-CH

Ultrafast Charging

New Materials: Bicontinuous Silicon Anodes

lithiated Zhang, Braun, et al. *Nano Letters*, **2012**

de-lithiated

Bicontinuous Silicon Anodes

Concluding Thoughts

- Nanotechnology can have "macroscopic" impact
 - Providing new properties important
 - Important to consider what will provide high value added
 - Minimize necessity of top-down processing (\$\$)
- Ask, what are the critical needs of industry?
 - Mechanical
 - Thermal
 - Energy storage/harvesting
 - Optical
- Long-term goal: make nanotechnology "invisible"
 - Boring
 - Commonplace
 - Normal
- Think beyond electronic materials and medicine

Acknowledgements

Research Group and Collaborators

Graduate Students Daniel Bacon-Brown Osman Cifci Eric Epstein Matthew Goodman Jin Gu Kang Ha Seong Kim Neil Krueger Hailong Ning Zeng Pan **Bibek Parajuli** James Pikul Kaitlin Tyler **Daniel Vissers** Junjie Wang Chunjie Zhang Runyu Zhang **Qiye Zheng**

Postdocs

Dr. Chaeryong Cho Dr. Jiung Cho Dr. Jinwoo Kim Dr. Sung Kon Kim Dr. Hyunh-Jun Koo Dr. Jinyun Liu Dr. Kris Waynant

Collaborators

Prof. David Cahill Prof. Jim Coleman Prof. Shanhui Fan (Stanford) Prof. William King Prof. Jennifer Lewis (Harvard) Prof. Jennifer Lewis Dr. Scott White

