Team Gas Sensor NO2: Primary Discussion Points

- Assumptions
 - Polyaniline and hydroxylated SHOULD interact with NOx
 - Degree of interaction corresponds to magnitude of resistive changes
 - Vapor functionalization post-processing
 - Device will be conductive
 - Customers
 - Airports, highways, power generation plants, IoT?
 - Bluetooth connectivity, battery operated
 - Mapping NO2 levels throughout a city

Team Gas Sensor NO2: Primary Discussion Points

- Factors impacting the reproducibility of the manufacturing method and final product
 - Dynamic range will be limited and needs to be tested
 - A lot of variability with drop-cast tubes
 - Variability in the tubes used in the process
 - Baseline measurement of resistance is required for each sensor
 - To reduce drift, keep the sensor above ambient high temp (also reduces Temp dependency)
- Factors to consider when choosing materials (e.g., cost, purity, source)
 - Quality control on CNTs is terrible
 - May need to remove surfactants, metal impurities, etc.
 - Polyaniline is very toxic
- The plan for testing, including field/test conditions, regulatory requirements, scope, etc.
 - Need to calibrate sensor
 - You can purchase a calibrated gas standard for NO2, but need to worry about potential interferences (particulates, other chemicals)
 - Very important to do field tests to avoid ants, eagles or any other unexpected visitors

Team Gas Sensor NO2 : Other Considerations (1 of 2)

- Factors impacting the scalability of the manufacturing method
 - Drop-cast method should be highly scalable, roll to roll could be used
 - Needs to be modified to speed up manufacturing process mass produced
- Limitations in terms of raw materials and processing technologies
 - NOx does not selectively interact with many CNTs
- Manufacturing cost drivers for this technology
 - Seems to be pretty reasonable
- Remaining technical issues hindering commercialization of this technology
 - Need to include a front-end filter to keep particles out of the sensor
 - Design includes a fan and heater, paper says it could be removed
 - No heater means it is a one-time measurement
 - But heater would also remove organics (eventually NO2!) and humidity
 - Sampling height?

Team Gas Sensor NO2 : Other Considerations (1 of 2)

- Factors that will influence the decision to manufacture in-house vs. contracting out
 - In-house manufacture is not sustainable
 - 120 um gap can be screen printed to speed up production, combined with roll to roll
- Life cycle considerations (e.g., device or effluent disposal)
 - Are we assuming the sensor is stable? Even with humidity and other contaminants
- Major safety concerns for manufacturing the sensor
 - CNTs dried during manufacture is a concern
 - Aniline is a concern
 - Durability during rain, acid rain, UV exposure, thermal gradients
- Other (please specify)
 - Wildlife interference?

Test selection for durability (aqueous due to rain events)

MCDA combinational testing output

ACDA Test Selection Tool

Tests Selection Scores Weights MCDA Results

- Instructions

You may edit the value weights for the criteria to reflect how important each criterion is to you. Criteria that are more important to you should be given a higher weight. The sum of the weights for all four criteria must equal 1.

Back

Continue

Tiers 2/4: CNTs low environmental hazard; large occupational hazard concern during manufacturing depending on "dustiness" level

aniline is hazardous (non-nano-concern)

Gas sensor to measure NO2 in air

Use of nano-enabled technology structure category cannot be excluded from regulatory testing

	Tie	r 1	Tier 2		Tier 3	TH	ar 4		Tier 5	
sic Information	Technology Category	Nanomaterial I	Definition Speciel	Froperbes					Help documentation	1
Instructions — Please read the use the dropdo select one tech rechnology cat	e description of each win menu at the bo mology category. If egory and run that t	of the nano-er tom to select ti multiple techno echnology cate	abled technology he most applicab logy categories a gory through the	/ categories by o le technology ca pply, please sta process separa	clicking on each of itegory to your pro it a separate profi itely.	the tabs be duct. You r le of NanoG	low. Then nay only RID for th	at	For more information on categories to inform your following resources: Collier ZA, Kennedy AJ, P MacCuspie RI, Harmon A, JA, 2015. Thered guidanc health and safety testing	these nano-enabled technology r selection, please see the oda AR, Cuddy MF, Moser RD, Plourde K, Idaines CD, Steevens e for risk-informed environmental of nanotechnologies. Journal of
Bull	c	Surface B	ound		Particle	5			Nanoparticle Research 12 http://link.springer.com/a 2Fs11051-015-2943-3	7:155. article/10.1007%
1A]	18 24	28	20	ЗA	38	3C	30	10	Hansen SF, Larsen BH, O	lsen SI, Baun A. 2007.
oughly 1 to	100 nanometers a	dimensions ra nd extend in 1	ange from two n.of	Ar	Kin4	n.			Hansen SF, Michelson ES Lauridsen F, Baun A. 200 aid exposure assessment products. Ecotoxicology 1	 Kamper A, Borling P, Stuer- 8. Categorization framework to t of nonomaterials in consumer 7:447.
oughly 1 to patial dimer nultiple type	100 nanometers a islons. This categ s of material.	dimensions ra nd extend in I ory is made u	inge from two p of						Hansen SF, Michelson ES Lauridsen F, Baun A. 200 old exposure assessment products. Ecotoxicology 1 http://link.springer.com/r -4	 Kamper A, Borling P, Stuer- B. Categorization framework to to fnanomaterials in consumer (7:447. article/10.1007/s10646-008-0210
oughly 1 to patial dimer nultiple type	100 nanometers a islons. This catego is of material.	dimensions ra nd extend in I ory is made u	inge from two p of						Hansen SF, Michelson FS Lauridsen F, Baun A. 200 old exposure assessment products. Ecotoxicology 1 http://link.springer.com/r -4 Back	Kamper A, Borling P, Stuer- B. Categorization framework to of nanomaterials in consumer 17:447. article/10.1007/s10646-008-0210 Continue
oughly 1 to patial dimer nultiple type ategory 3A: Su	nanometers a islons. This catego is of material.	dimensions ra nd extend in I ory is made u	inge from two p of , diamonds etc.) 2	Demensional Struct	ture (Multi Type)				Hansen SF, Michelson FS Lauridsen F, Baun A. 200 aid exposure assessment products. Ecotoxicology 1 http://link.springer.com// -4 Back Reset Page	i, Kamper A, Borling P, Stuer- B. Categorization framework to of nanomaterials in consumer 17:447. article/10.1007/s10646-008-0210 Continue

Use of nanoparticle cannot be excluded from regulatory testing

Home	Ner 1	Tier 2	Tier 3	Tier 4	Tier 5	
asic Information Technology Categ	ory Nanomaterial	Definition Special Propert	tes		Help documentation	
 Instructions Please select all of the following approach by checking the box of Solid at 25 °C and 1 atms Solid at 25 °C and 1 atms Section 8) or (B) by partial 100 nm in at least one dimension The material is a nanoma at least one dimension There is strong evidence average aggregate size is If there is aggregation or sinterimust have a very strong rations may wish to determine if further The average volume spect 2010) The nanomaterial display one of the following categories 	that apply. If you ext to the question osphere and at 1 de number (EU nension. terial, as define that there is age greater than 10 ing there may be a le in the text box nano-specific reg ific surface area is size-dependent pories:	are unsure of an answe m(s). least 1% of the total 2011) has a primary d above, and the aver gregation or sintering 000 nm an argument that the ma below. If you have strou ulatory scrutiny or testin of the material is gre at unique/novel proper	r, you may use a precau particles (A) by mass particle size that is le age aggregate size is (irreversible size incre iterials are no longer nan ng rationale and this is th g is required. eater than 60 m^2 / c ties that are a result o	tonary ("conservative") (US EPA TSCA as than or equal to less than 1000 nm in ease) such that the o-sized. However, you c only check box, you m^3 (Kreyling et al of its size in at least	For more information on t cotegories to inform your following resources: Kreyling WG, Semmler-Be complementary definition S:165-168. http://www.sciencedirect 3210000460 European Commission. C 18 October 2011 on the d Official Journal of the Euro http://eur-lex.europa.eu/ urii:03:1:2011:275:038: Surface Area Analysis Usi (8ET) Method (2016). Bra ERDC/EL SR-16-3) https://erdc library.erdc.dren.mil/xmlu US EPA TSCA Section 8a https://owww.federalregis 017-00052/chemical-subb processed-as-nanoscale-f	these nano-enabled technology selection, please see the of nonomaterial. Nano Today .com/science/article/pii/S17480 ammission recommendation of elinition of nanomaterial. 2011 opean Union. 2011/696/EU. .exVir/Serv/LexUir/Serv.do? 0040:EN:PDF ng the Brunauer-Emmett-Teller me, J.A., Griggs, C.S. (No. II/handle/11681/20339 ter.gov/documents/2017/01/12 tances-when-manufactured-or materials-tsca-reporting-and
- Strength - Magnetism	12.02	- Light ref - Color	lection		Back	Continue
- Chemical rea - Electrical con - Heat conduct	ctivity ductance ivity	- Melting (- Fluoresc	ence		Reset Page	Undo Last
					Save Profile	Generate Report

Perform tests: Low release potential?

lserForm1			Summittee .	lane-		×
Home	Tier 1	Tier 2	Tier 3	Tier 4	Tier 5	
Release Hazard Identific	ation Testing Identification				Help documentation	
Product Classificat	tion and Use					-
Is the product a 3B or 3D)?	a freely dispersed partic	e (product class	Yes	No		
Conservative Rele	ase Scenario					
Does your mate Concentration?	erial have a known Pred	cted No Effect	Yes	No		
Would you like to values (skip to without it and g Tier 2)?	to first generate hazard Tier 4) or would you pro generate release data (o	data / screening fer to proceed ~ continue/complete	Go to Tier 4	Proceed in Tier 2		
Testing Identificat	tion					
Perform release Identification ta under a realistic	e testing per results of 1 ab in order to quantify th c use scenario.	esting e potential release	Conti	nue		
Release Data Gene	eration & Analysis					-
After characteri were nanomate matrix-bound fo	izing released material p rials released either in form that still meets the	per Martin et al., a free form or a " definition of 'nano'?	Yes	No		
This may suggest lo findings). Keep in mi pristine nano-scale in you may proceed to	w risk/concern. It is rec ind, however, that the t ngredient. If you would Tier 3 by clicking 'Conti	ommended that you s oxicity of matrix-boun like to continue chara nue'.	top here (click 'Generat d material may be differ cterizing the EHS implic	e Report' to save your ent from that of the ations of your product,		
					Back	Continue
					Reset Page	Undo Last
					Save Profile	Generate Report

Hazard values entered for demonstration purposes: need to consider CNT dustiness, worker inhalation risk during manufacturing (while material is dry)

