Nanocellulose Reinforced Polymers

Cliff Eberle Soydan Ozcan

Oak Ridge National Laboratory

Presented at Cellulosic Nanomaterials Workshop

Washington, DC

21 May 2014

ORNL is managed by UT-Battelle for the US Department of Energy

ORNL is DOE's largest science and energy laboratory

40% of US Energy Demand Uses Oil....

Source: 2012 Transportation Energy Data Book

....2/3 Being Used for Transportation

Source: 2012 Transportation Energy Data Book

OAK RIDGE National Laboratory

Nanocellulose Has Interesting Properties

Material	Density	Tensile Strength	Tensile Modulus	Cost
	g/cc	MPa	GPa	\$/kg
Hi Strength Steel	7.9	600	210	~1
Aluminum 6061-T6	2.7	275	70	~2
E-glass fiber	2.5	3,500	80	~2
Carbon fiber	1.8	4,000	230	>20
Cellulosic Nanocrystals*	1.5	7,500	135	4-10

Cellulosic nanomaterials are potentially useful as either primary or secondary reinforcements in polymer matrix composites

*Source: Ted Wegner, seminar at Oak Ridge National Laboratory, Nov 2012

Functional Attributes

- Piezoelectric constant similar to that of quartz
 - Sensing, dynamic shape control
- Forms nematic liquid crystal phase yielding control over optical properties
 - In-molded color, transparency
- NCC exhibits excellent, tailorable barrier properties
- Magnetically responsive
- Aerogel/ foam capable, highest surface area among cellulosic aerogels
- Can be made highly hydrophobic or hydrophilic
- Can be generated by bacteria including certain algae

Challenges: Strength Translation

Normalized theoretical properties of a 30% w/w unidirectional Glass fibre/polypropylene

CNC aspect ratio limits strength translation in composite

Sources:

- Henning and Gleich, Composites Tutorial at SPE Automotive Composites Conference and Exposition, Troy MI Sept 2012
- (2) Ted Wegner, seminar delivered at Oak Ridge National Laboratory, Nov 2012

Surface has to be engineered to achieve good dispersion and bonding to matrix

Challenges: Stability

- For the automotive environment:
 - Thermal: E-coat process can be 200°C for up to an hour
 - Must maintain dimensional stability, structural integrity, and appearance for 15 years in
 - Desert heat and arctic cold
 - UV exposure intense sunlight
 - Wet and humid conditions, including summer heat (hot-wet)
 - Chemical exposures fuel spills, hydraulic fluids, acids, etc.
 - Mild impacts (insects, pebbles, etc)

Challenges: Qualification

- Aircraft
 - Limited/incremental material qualification can cost > \$1M
 - Material or process changes require requalification
 - Cost of a revolutionary platform qualification program (e.g., Boeing 787) can approach \$100M
- Automotive
 - Qualification requirements less regulated
 - Combination of liability and large volumes drives risk
 - Extreme penalties for suppliers that fail to deliver

Challenges: Timing

- Insertion into aircraft and automotive programs is excruciatingly slow
 - Major aircraft programs can require well over a decade from concept to full production (see 787 timeline below)
 - 2018 automotive platform design decisions are being made NOW
 - Automotive production schedules WILL NOT be delayed

Challenges: Scale – "The Million Ton Question"

How to manage cost and start small but grow big?

Key Drivers for Deployment

- Aircraft operational efficiency and passenger comfort
- Freight- increased payload
- Automotive fuel economy, emissions regulations, safety and reliability
- Buildings, infrastructure, etc energy efficiency, enhanced functionality

Summing it up

- Cellulosic nanomaterials potentially offer a unique and wonderful combination of properties and cost as a polymer reinforcement
- High volume, cost-sensitive markets are likely to be good cellulosic nanomaterials applications
- The road to commercial deployment is long and difficult
- There are markets that will reward those who stay the course

