Sensors NSI: About



Participating agencies

cpsc logo

Consumer Product Safety Commission (CPSC)

CPSC staff support the responsible research and development of nanotechnology for implementation in innovative rapid sensing and monitoring devices to improve safety for consumers. The development of novel sensitive, discriminative, and low-cost nanosensors for use in consumer products to detect prehazardous conditions and to provide warning or enable preventive action can reduce likelihood of deaths and injuries. CPSC staff will provide support to the NSET Subcommittee on currently available tools, standards, and approaches to assess the safety, efficacy, quality, and performance of products under CPSC’s jurisdiction.

Defense Threat Reduction Agency (DTRA, part of DOD)

DTRA supports the discovery and development of analytical methods and enabling nanomaterials for rapid and sensitive detection and identification of chemical and biological threats and of new materials to enhance protection against such threats. DTRA also supports the discovery of diagnostic methods for identifying biomarkers indicative of exposure or infection by biological agents, and new approaches in sensor data analysis and algorithms for threat detection.

epa logo

Environmental Protection Agency (EPA)

The National Center for Environmental Research (NCER) at the EPA has supported research in the development of innovative and rapid sensing and monitoring devices. These devices enable accurate assessment of the environment as well as identification and quantification of environmental contaminants. The research was accomplished through the Science to Achieve Results (STAR) grants program. Additionally, the EPA used the Small Business Innovation Research program as the means by which promising technologies, such as sensors, were solicited and funded.

Food and Drug Administration (FDA)

FDA supports the responsible development of nanotechnology, including products relevant to nanosensors. FDA will provide guidance on currently available tools, standards, and approaches, as appropriate, to assess the safety, efficacy, quality, and performance of FDA-regulated products that may incorporate nanomaterials or otherwise involve the application of nanotechnology.

nasa logoNational Aeronautics and Space Administration (NASA)

NASA currently develops nanosensors that are highly sensitive and miniaturized, and that have low power consumption, for detection of chemical and biological species. Applications for these sensors include incorporation into lab-on-a-chip technologies for crew health monitoring, water quality monitoring in the International Space Station, and detection of biomarkers in planetary exploration. NASA also develops nanotechnology-based chemical sensors for a variety of gases and vapors encountered in planetary exploration, Earth monitoring, and aircraft and spacecraft vehicle safety. NASA is also working on the development of nanosensors to measure mechanical strain and detect the early onset of damage in structural materials for use in structural health monitoring for aircraft and spacecraft. The technology and test bed platforms are generic to leverage for biomedical and security applications.

nih logo

National Institutes of Health (NIH)

NIH supports nanosensor R&D programs in biomarker discovery and validation, platform development for multiplexed biomarker detection (including microfluidics platforms, proteomic devices, and SERS instrumentation), multi-analyte arrays for exposure monitoring (both point-of-contact and biomonitoring), molecular probes, DNA sequencing and bioinformatics, and characterization of nanoparticles in vivo. 


niosh logoNational Institute for Occupational Safety and Health (NIOSH)

The NIOSH Nanotechnology Research Center (NTRC) has designated applications of nanotechnology for occupational safety and health as one of the 10 critical areas in its organized program of research to identify, investigate, and develop science-based solutions to workplace health and safety knowledge gaps. Through activities such as its Manual of Analytical Methods, NIOSH supports development of guidelines and voluntary consensus standards for identification of sensor needs and objectives; methods development, testing, and certification; user training, documentation, and improvement; sensor acceptance, calibration, and reliability checks; evaluation of operational experience; and periodic performance testing, including realistic applications in complex workplace situations. NIOSH also partners and conducts sensor-related work through the NIOSH Center for Direct Reading and Sensor Technologies.

nist logoNational Institute of Standards and Technology (NIST)

The NIST laboratories are developing a variety of measurement methods to characterize nanosensors and nanomaterials and are creating nanosensors and nanomaterials for measurement applications and standards. Nanoscale reference materials developed at NIST support the validation of new sensing platforms. The NIST Center for Nanoscale Science and Technology user facility provides access to the tools and processes needed to accelerate the commercialization of nanosensor systems. Research addressing information quality, integrity, and usability will contribute to the reliability and security of sensor networks and data analysis. NIST’s complementary nanoEHS programs and projects support the safe manufacture, use, and disposal of engineered nanomaterials and nanotechnology-enabled products.

nsf logoNational Science Foundation (NSF)

Through its Nano-Biosensing, Biophotonics, and other programs, NSF supports development of novel sensitive, discriminative, low-cost, and easy-to-operate biosensing systems; innovative ideas in the development of novel biorecognition strategies; multifunctional nanomaterials and interfaces with predefined physical, chemical, or biological characteristics for biosensing applications; and fundamental study of biomacromolecules confinement and orientation at the micro- and nanoscale interfaces for biosensing applications. NSF also supports the development of sensors to detect engineered nanoparticles in a variety of environmental matrices.

nifa logoNational Institute of Food and Agriculture (NIFA, part of USDA)

NIFA’s activities in nanotechnology for biosensors support its mission, strategic goals, and high priorities and apply broadly to plant and animal production systems, food quality and safety, nutrition and health, the environment, and nano-biomaterials. The primary thrusts are in the following areas: (1) Develop novel technologies for characterizing fundamental nanoscale bioprocesses; (2) Construct and characterize self-assembled nanostructures; (3) Develop nanoscale devices and systems incorporating micro-fabrication and nanotechnology; (4) Develop a framework for economic, environmental, and health risk assessment for nanotechnologies applied to food, agriculture, and biological systems; and (5) Produce education and outreach materials on nanofabrication, sensing, systems integration, and application risk assessment.